检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评估模型效果 训练作业完成后,可以通过平台提供的评估指标评估模型的效果,查看模型指标步骤如下: 使用最终租户登录ModelArts Studio平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”。 单击训练完成的模型,可在“训练结果”页面查
学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 热身比例 热身比例是指在模型训练初期逐渐增加学习率的过程。 由于训练初期模型的权重通常是随机初始化的,预测能力较弱,若直接使
海洋模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。
优化训练超参数 模型微调超参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
模型调优方法介绍 在实际应用中,首次微调所得的模型往往无法取得最佳效果,为了让模型能更好地解决特定场景任务,通常需要根据微调所得模型的效果情况来进行几轮的模型微调优化迭代。 在大模型的微调效果调优过程中,训练数据优化、训练超参数优化、提示词优化以及推理参数优化是最重要的几个步骤。
这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签,单击状态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径
参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“专业大模型 > BI专业大模型”或“专业大模型 > 搜索专业大模型”。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型
模型训练实践 盘古科学计算大模型微调训练实践
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。 具体做法如下:
助于用户高效管理模型生命周期,提高资产管理效率。 模型资产包含以下两种形式: 预置模型。 用户在平台中可试用、已订购的预置模型。 用户自行发布的模型。 用户可以将训练完成的模型发布为模型资产。发布的模型支持查看详细信息、编辑属性、删除、导出、导入等操作。 管理模型资产 登录ModelArts
模型调优方法介绍 调优目标:提升模型精度和性能。 调优思路:模型调优总体可分为两方面,数据预处理和模型训练参数优化,优化思路是从最简单的情形出发,逐步迭代调整提升模型效果,通过实验发现和确认合适的数据量,以及最佳的模型结构和模型参数。 父主题: 盘古科学计算大模型调优实践
使用“能力调测”调用NLP大模型 能力调测功能支持用户调用预置或训练后的NLP大模型。使用该功能前,请完成模型的部署操作,步骤详见创建NLP大模型部署任务。 使用“能力调测”调用NLP大模型可实现文本对话能力,即在输入框中输入问题,模型将基于问题输出相应的回答,具体步骤如下: 登录ModelArts
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
气象/降水模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场