检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
egpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅
数据集因为是导入的整个文本文件,故删除一条样本不会对源文本有影响)。可选值如下: false:不删除源文件(默认值) true:删除源文件(注意:此操作可能影响已使用这些文件的数据集版本或其他数据集,导致页面展示异常或者训练/推理异常) samples 否 Array of strings
下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径} ${存放数据集的obs文件夹路径}
cache/gallery/model/ur12345--gpt2” ENV_AG_DATASET_DIR 数据集存放路径,AI Gallery的数据集仓库地址,包含数据集仓库的所有文件。 “/home/ma-user/.cache/gallery/dataset/ur12345--data_demo”
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share
事件名称 创建数据集 dataset createDataset 删除数据集 dataset deleteDataset 更新数据集 dataset updateDataset 发布数据集版本 dataset publishDatasetVersion 删除数据集版本 dataset
事件名称 创建数据集 dataset createDataset 删除数据集 dataset deleteDataset 更新数据集 dataset updateDataset 发布数据集版本 dataset publishDatasetVersion 删除数据集版本 dataset
egpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab
egpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅
本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址:
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share
(可选,如果选择使用humaneval数据集) pip install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生
Gallery也支持使用SDK构建自定义模型接入AI Gallery。 Transformers库介绍 AI Gallery使用的Transformers机器学习库是一个开源的基于Transformer模型结构提供的预训练语言库。Transformers库注重易用性,屏蔽了大量AI模型开发使用过程中
数据源类型。可选值如下: OBS:数据来源于OBS TASK:数据处理任务 DATASET:数据集 CUSTOM:资源租户调用 version_id String 数据集的版本。 version_name String 数据集的版本名称。 表4 TemplateParam 参数 参数类型 描述 id