检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。 通过学习本案例,您可以了解如何在ModelArts平台上训练作业、部署推理模型并预测的完整流程。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着
MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公
ModelArts Standard自动学习案例 表1 自动学习样例列表 样例 对应功能 场景 说明 口罩检测 自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI
后续挂载磁盘、绑定弹性网络IP等操作可在BMS服务控制台上完成。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。
注作业。 在弹出的“启动智能标注”对话框中,选择智能标注类型,可选“主动学习”或者“预标注”,详见表1和表2。 表1 主动学习 参数 说明 智能标注类型 “主动学习”。“主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 算法类型
Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
Standard是面向AI开发者的一站式开发平台,提供了简洁易用的管理控制台,包含自动学习、数据准备、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链。 Standard的自动学习可以帮助用户零代码构建AI模型。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模
实现车辆自主感知环境、规划路径和控制行驶。支持自动驾驶场景PB级数据下模型高效训练,助力自动驾驶特有的感知、规控、仿真生成等全链路相关算法深度优化并快速迭代。 内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。
Lite功能介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自动驾驶、AIGC、内容审核等领域广泛得到应用。
集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。 解决方案: 方法1:使用导入功能。将图片上传至OBS任意目录,通过
TFServing框架、Triton框架为例,介绍如何迁移到推理自定义引擎。 TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP
边等各种设备。 一键部署,可以直接推送部署到边缘设备中,选择智能边缘节点,推送模型。 ModelArts基于Snt3高性能AI推理芯片的深度优化,具有PB级别的单日推理数据处理能力,支持发布云上推理的API百万个以上,推理网络时延毫秒。 父主题: Standard功能介绍
专属资源池计费项 计费说明 在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
Standard资源池功能介绍 ModelArts Standard资源池,提供了在使用ModelArts进行AI开发(包括自动学习、创建Workflow工作流、创建Notebook实例、创建训练作业和创建推理服务)所需的计算资源,您可根据需要购买使用Standard资源池。 图1
BS)中的元模型和容器镜像中的元模型,可对所有迭代和调试的AI应用进行统一管理。 约束与限制 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至AI应用列表中。但是自动学习生成的AI应用无法下载,只能用于部署上线。 创建AI应用、管理AI应用版本等功能目前是免费开放给所有用户,使用此功能不会产生费用。
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab