检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是图像分类和物体检测? 图像分类是根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。简单的说就是识别一张图中是否是某类/状态/场景,适合图
创建项目的时候,数据集输入位置没有可选数据 可能原因 创建的OBS桶与创建项目不在同一个区域。 账号没有配置全局授权。 OBS桶里的数据格式不符合要求。 解决方法 查看ModelArts创建的项目与创建的OBS桶是否在同一区域。 查看创建的OBS桶所在区域。 登录OBS管理控制台。
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
创建项目时,如何快速创建OBS桶及文件夹? 在创建项目时需要选择训练数据路径,本章节将指导您如何在选择训练数据路径时,快速创建OBS桶和OBS文件夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,进入创建桶页面,具体请参
集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手
在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 请您检查未标注图片的标注文件是否正确。如果标注框文件坐标超过图片,自动学习默认该图片未标注。 父主题: 数据标注
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。
使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 若您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 若您的
方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。 MoXing提供了一套文件对象API,可以用来读写OBS文件。
物体检测图片标注,一张图片是否可以添加多个标签? 可以,一张图片可添加多个标签。 父主题: 数据标注
物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 图片格式支持JPG、JPEG、PNG、BMP。 父主题: 准备数据
收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 M
如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
800训练服务器三维视图 Atlas 800 训练服务器(型号9000)是基于华为鲲鹏920+Snt9处理器的AI训练服务器,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器
4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorf