检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型
创建NLP大模型训练任务 创建NLP大模型微调任务 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 在“创建训练任务”页面,模型类型选择“NLP大模型”,训
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
发布文本类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 文本类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。
发布图片类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供
数据工程介绍 数据工程简介 数据工程是ModelArts Studio大模型开发平台为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、标注、评估和发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF
文本对话 功能介绍 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 URI POST /v1/{project_id}/deployments/{deployment_id}/chat/completions 表1 路径参数 参数 是否必选 参数类型 描述 project_id