检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建横向评估型作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和计算节点,参考部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 仅IEF计算节点支持创建横向评估型作业。
可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
务的输入,通过执行联邦分析和联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署和边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。 云租户部署:基于云容器引擎(CCE,Cloud Container Engine)服务部署,CCE提供高可
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
横向联邦训练作业对接MA 前提条件 MA Lite资源池已创建完毕。 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考4.1 部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考4
数据准备 乳腺癌数据集从UCI获取,该数据集只包含连续类型特征,因此对所有特征使用Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集
查看作业计算过程和作业报告 在空间侧查看作业计算过程和作业报告 用户登录TICS控制台。 在左侧导航树上单击“空间作业”,打开“空间作业”页面。 在作业列表上,单击对应作业操作栏的“作业报告”。可在弹出的页面查看作业报告。 图1 空间侧查看作业报告 空间侧不支持查看作业执行结果,
执行样本对齐 功能介绍 执行样本对齐 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sampleAlignment 表1 路径参数 参数 是否必选 参数类型
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数
执行ID选取截断 功能介绍 执行ID选取截断(样本粗筛) 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/idTruncation 表1 路径参数 参数
保存纵向联邦作业 功能介绍 保存纵向联邦作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
获取纵向联邦作业详情 功能介绍 获取纵向联邦作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
执行联邦学习作业时,报“ERROR UNAVAILABLE:Network closed for unknown reason”,如何解决? 问题描述 执行联邦作业时,出现“ERROR UNAVAILABLE:Network closed for unknown reason”报错信息。
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业
查询特征选择执行结果 功能介绍 查询特征选择执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/features-selection-result
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模