检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用API创建训练作业,训练作业异常 问题现象 调用API接口创建训练作业(专属资源池为CPU规格),训练作业状态由“创建中”转变为“异常”,训练作业详情界面“规格信息”为“--”。 原因分析 调用接口传入了CPU规格的专属资源池不支持的参数。 处理步骤 检查API请求的请求体中
expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的
txt Step5 训练Wav2Lip模型 准备预训练模型。下载需要使用的预训练模型。 人脸检测预训练模型,下载链接。 专家唇形同步鉴别器,下载链接 ,此链接是官方提供的预训练模型。训练Wav2Lip模型时需要使用专家唇形同步鉴别器,用户可以用自己的数据训练,也可以直接使用官方提供的预训练模型。
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行性能比较脚本 完成benchmark启动任务。 进入test-benchmark目录执行命令。 ascendfactory-cli performance <cfgs_yaml_file> --baseline
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/tr
该专属资源池的训练作业才能正常挂载SFS。因此,当训练作业挂载SFS失败时,可能是网络不通导致的。 处理步骤 进入训练作业详情页,在左侧获取SFS Turbo的名称。 图1 获取SFS Turbo的名称 登录弹性文件服务SFS控制台,在SFS Turbo列表找到训练作业挂载的SFS
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行预训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其
从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
torch_npu from torch_npu.contrib import transfer_to_npu 将预训练模型指定为实际下载路径。 开始训练。 单卡训练启动方式: torchrun --nnodes=1 --nproc_per_node=1 train.py --model
管理模型训练作业 查看训练作业详情 查看训练作业资源占用情况 查看模型评估结果 查看训练作业事件 查看训练作业日志 修改训练作业优先级 使用Cloud Shell调试生产训练作业 重建、停止或删除训练作业 管理训练容器环境变量 查看训练作业标签 父主题: 使用ModelArts Standard训练模型
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题: