检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
意识,制定科学规范的使用办法,强化使用过程的监测和评估。必须严格按照项目运作方案来确定资金使用范围,确保所有使用资金都是经过规范操作和审批的,必须严格按照使用资金的监管属性,统一管理各类资金,精细、规范、稳健。在内部管理上,应加强信息通报、关联跨部门协调机制,提高管理精神与管理水
"meeting_room_status_query", toolDesc = "查询会议室的状态,是否被预定或者正在使用中", toolPrinciple = "请在需要预定会议室之前使用,查询会议室状态判断是否可以预定", inputDesc = "", outPutDesc = "会议室状态")
件。 图3 购买盘古大模型套件 对于前期邀测用户,如果未购买模型推理资产,仍可以使用公共资源池部署模型;对于购买推理资产的邀测用户,仅可以使用专属资源池部署模型。 对于新购买平台的用户,仅可购买并使用专属资源池。 父主题: 准备工作
此时,再次使用同样的问题,则不会再调用大模型,而是直接从内存返回: llm.ask("你能讲一个笑话吗?") Cache缓存有以下几个操作: 初始化:指定缓存使用哪种存储方式。例如,使用内存型缓存可以设置为Cache cache = Caches.of(Caches.IN_MEMORY);。 import com.huaweicloud
son”。 X-Auth-Token:用户Token,可选,当使用Token方式认证时,必须填充该字段。用户Token请参考认证鉴权中的“Token认证”。 公有云API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authori
注册华为账号并开通华为云 在使用华为云服务之前,您需要先注册华为账号并开通华为云。通过此账号,您可以按需付费,灵活使用所有华为云提供的服务。 进入华为云官网,参考账号注册指导及界面提示信息,完成账号注册。 注册成功后即可自动登录华为云,您需要完成“实名认证”才可以正常使用服务。具体认证方式请参见实名认证。
购买一只给宝贝一个最温暖的拥抱吧!"} 数据量级要求:本场景使用了5000条数据进行微调。 说明:类似场景需要的微调数据量视具体情况而定。从经验上来说,如果实际场景相对单一,比如只需要构建短视频口播文案生成的场景,则使用5000条数据即可;如果场景中涵盖多个细分场景,比如短视频口
Python SDK 安装SDK 配置SDK LLMs(语言模型) Prompt(提示词模板) Memory(记忆) Skill(技能) Agent(智能代理) 应用示例 父主题: 盘古应用开发SDK
配置SDK 基础配置项 SDK依赖的配置项主要通过加载llm.properties配置文件。 在项目路径下,创建llm.properties文件,并根据实际需要配置相应的值。 在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置 import
Java SDK 安装SDK 配置SDK LLMs(语言模型) Prompt(提示词模板) Memory(记忆) Skill(技能) Agent(智能代理) 应用示例 父主题: 盘古应用开发SDK
准备工作 使用盘古大模型应用开发SDK时,需要在代码中配置以下信息,请提前收集。 表1 资源列表 类型 资源 是否必选 依赖信息 参考文档 备注 大语言模型 华为云盘古 是(大语言模型至少选一个) 盘古模型API调用URL。 华为云IAM账号认证信息。 盘古大模型API参考文档:
大模型概念类问题 大模型是什么 大模型的计量单位token指的是什么 大模型是否可以自定义人设 盘古自然语言大模型的适用场景有哪些 大模型的安全性需要从哪些方面展开评估和防护 训练智能客服系统大模型需要考虑哪些方面
解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。 多用肯定句,少用否定句,比如“你不能A -> 你必须保证^A”,“你不能生成重复的问题
定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输
API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions) Java、Python、Go、.NET、NodeJs 基于
或者学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置
通过知识库提升AI助手在特定领域问题的回答效果。 高级配置 工具召回策略 设置从所有可用工具中选择最相关的工具来处理用户的问题策略。 类型:使用词嵌入技术(embedding)来衡量用户问题与工具之间的相关性。 中断策略:当相关性得分小于设置的阈值,则不召回任何工具,终止后续流程。
配置SDK 基础配置项 SDK依赖的配置项主要通过读取llm.properties配置文件;如果配置文件名不为llm.properties,需要在项目中主动设置,方法如下: 在resources路径下,创建llm.properties文件,并根据实际需要配置相应的值。 如果需要自定义配置文件名,可以参考以下代码设置。
什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话
结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简明易懂地说明这些技巧在提示工程中的应用。随着模型的进化和理解能力的提升,尽管在简单任务中模糊的指示也会取得