检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用Hudi Hudi表概述 使用Spark Shell创建Hudi表 使用spark-sql操作Hudi表 使用Hudi-Cli.sh操作Hudi表 Hudi写操作 Hudi读操作 Hudi数据管理维护 Hudi SQL语法参考 Hudi Schema演进 配置Hudi数据列默认值
使用Impala Impala客户端使用实践 访问Impala WebUI界面 使用Impala操作Kudu表 Impala对接外部LDAP Impala启用并配置动态资源池 使用Impala查询管理界面 Impala常见配置参数 Impala常见问题
Spark开发接口简介 Spark支持使用Scala、Java和Python语言进行程序开发,由于Spark本身是由Scala语言开发出来的,且Scala语言具有简洁易懂的特性,推荐用户使用Scala语言进行Spark应用程序开发。 按不同的语言分类,Spark的API接口如表1所示。
PyFlink样例程序开发思路 假定业务平台需要提交Flink任务到MRS集群,业务平台主要使用的语言是Python,提供Python读写Kafka作业和Python提交SQL作业的样例。 本场景适用于MRS 3.3.0及以后的集群版本。 父主题: PyFlink样例程序
PyFlink样例程序开发思路 假定业务平台需要提交Flink任务到MRS集群,业务平台主要使用的语言是Python,提供Python读写Kafka作业和Python提交SQL作业的样例。 本场景适用于MRS 3.3.0及以后的集群版本。 父主题: PyFlink样例程序
使用Storm 从零开始使用Storm 使用Storm客户端 使用客户端提交Storm拓扑 访问Storm的WebUI 管理Storm拓扑 查看Storm拓扑日志 Storm常用参数 配置Storm业务用户密码策略 迁移Storm业务至Flink Storm日志介绍 性能调优
过滤器类型 选择文件过滤的条件。“WILCARD”表示使用通配符过滤,“REGEX”表示使用正则表达式匹配。与“路径过滤器”和“文件过滤器”配合使用。不选择值时默认为通配符过滤。 路径过滤器 与“过滤器类型”配合使用,配置通配符或正则表达式对源文件的输入路径包含的目录进行过滤
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
MapReduce基本原理 如需使用MapReduce,请确保MRS集群内已安装Hadoop服务。 MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
从零开始使用Spark 本章节提供从零开始使用Spark提交sparkPi作业的操作指导,sparkPi是最经典的Spark作业,它用来计算Pi(π)值。 操作步骤 准备sparkPi程序。 开源的Spark的样例程序包含多个例子,其中包含sparkPi。可以从https://archive
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
快速使用Doris Doris是一个基于MPP架构的高性能、实时的分析型数据库,不仅可以支持高并发的点查询场景,也能支持高吞吐的复杂分析场景。 本文主要通过示例介绍如何快速使用MRS Doris集群进行基本的建表和查询操作。 Doris数据库名和表名区分大小写。 前提条件 已创建
x及之后版本) 用户分类 MRS集群提供以下3类用户,请系统管理员定期修改密码,不建议使用默认密码。 用户类型 使用说明 系统用户 通过FusionInsight Manager创建,是系统操作运维与业务场景中主要使用的用户,包含两种类型: “人机”用户:用于在FusionInsight M
TABLE创建表 本章节主要介绍ClickHouse创建表的SQL基本语法和使用说明。 基本语法 方法一:在指定的“database_name”数据库中创建一个名为“table_name ”的表。 如果建表语句中没有包含“database_name”,则默认使用客户端登录时选择的数据库作为数据库名称。
cache table使用指导 问题 cache table的作用是什么?cache table时需要注意哪些方面? 回答 Spark SQL可以将表cache到内存中,并且使用压缩存储来尽量减少内存压力。通过将表cache,查询可以直接从内存中读取数据,从而减少读取磁盘带来的内存开销。