内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习学习和纯优化有什么不同

    时所预测的输出,pˆdata 是经验分布。监督学习,y 是目标输出。在本章,我们会介绍不带正则化的监督学习,L的变量是 f(x; θ) 和 y。不难将这种监督学习扩展成其他形式,如包括 θ 或者 x 作为参数,或是去掉参数 y,以发展不同形式的正则化或是无监督学习

    作者: 小强鼓掌
    346
    1
  • 深度学习之构建机器学习算法

    这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下

    作者: 小强鼓掌
    525
    1
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域),该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科

    作者: 初学者7000
    636
    1
  • 深度学习之构建机器学习算法

    闭解。这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定

    作者: 小强鼓掌
    830
    3
  • 深度学习之维数灾难

    x 处单位体积内训练样本的数目除以训练样本的总数。如果我们希望对一个样本进行分类,我们可以返回相同网格训练样本最多的类别。如果我们是做回归分析,我们可以平均该网格样本对应的的目标值。但是,如果该网格没有样本,该怎么办呢?因为在高维空间中参数配置数目远大于样本数目,大部分配置没

    作者: 小强鼓掌
    1034
    3
  • 机器学习深度学习的比较

    小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因此,深度学习要求包括GPU。这是它工作不可或缺

    作者: @Wu
    541
    1
  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    839
    2
  • 深度学习应用开发》学习笔记-03

    有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,

    作者: 黄生
    1333
    6
  • 深度学习的知识蒸馏技术

    能力,而小模型因为网络规模较小,表达能力有限。因此,可以利用大模型学习到的知识去指导小模型训练,使得小模型具有与大模型相当的性能,但是参数数量大幅降低,从而实现模型压缩与加速,这就是知识蒸馏与迁移学习在模型优化的应用。Hinton等人最早在文章《Distilling the Knowledge

    作者: 可爱又积极
    1074
    3
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 深度学习应用开发》学习笔记-11

    太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就

    作者: 黄生
    1128
    1
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    345
    1
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    升,截至2017年10月18日,PyTorch的热度已然超越了其他三个框架(Caffe、MXNet和Theano),并且其热度还在持续上升。 2、PyTorch的特点 PyTorch可以看作是加入了GPU支持的Numpy。而TensorFlow与Caffe都是命令式的编程语言,

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 分享深度学习算法

    GR推荐原因这是第一篇关于基于深度学习的立体匹配任务的综述文章,以往关于立体匹配的综述文章多基于传统方法,或者年代已久。这篇综述文章主要总结了过去6年发表在主要会议和期刊上的150多篇深度立体匹配论文,可以称得上方法最新,分类最全,概括最广。在论文中,作者首先介绍了深度立体匹配网络的常用架

    作者: 初学者7000
    953
    3
  • 深度学习之过拟合

    算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。

    作者: 小强鼓掌
    335
    1
  • 深度学习之维数灾难

    x 处单位体积内训练样本的数目除以训练样本的总数。如果我们希望对一个样本进行分类,我们可以返回相同网格训练样本最多的类别。如果我们是做回归分析,我们可以平均该网格样本对应的的目标值。但是,如果该网格没有样本,该怎么办呢?因为在高维空间中参数配置数目远大于样本数目,大部分配置没

    作者: 小强鼓掌
    747
    1
  • 深度学习VGG网络

    代替AlexNet的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG,使用了3个3x3

    作者: 我的老天鹅
    579
    16
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习模型结构

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: QGS
    646
    2
  • 深度学习之泛化误差

    算能力的增速,机器学习应用每个样本只使用一次的情况变得越来越常见,甚至是不完整地使用训练集。在使用一个非常大的训练集时,过拟合不再是问题,而欠拟合和计算效率变成了主要的顾虑。读者也可以参考 Bottou and Bousquet (2008a) 关于训练样本数目增长时,泛化误差上计算瓶颈影响的讨论。

    作者: 小强鼓掌
    545
    1