检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降 (stochastic gradient descent, SGD)。随机梯度下降是第4.3节介绍的梯度下降算法的一个扩展。机器学习中的一个循环问题是大的数据集是好的泛化所必要的,但大的训练集的计算代价也更大。机器学
x(j))。构建这个矩阵的计算量是 O(m2)。当数据集是几十亿个样本时,这个计算量是不能接受的。在学术界,深度学习从 2006 年开始收到关注的原因是,在数以万计样本的中等规模数据集上,深度学习在新样本上比当时很多热门算法泛化得更好。不久后,深度学习在工业界受到了更多的关注,因为其提供了一种可扩展的方式训练大数据集上的非线性模型。
不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法允许我们使用所有的样本估计平均测试误差,代价是增加了计算量。这些过程是基于在原始数据上随机采样或分离出的不同数据集上重复训练和测试的想法。最常见的是
基因诊断样本尤其适用; TNhaplotyper2:此模块匹配Mutect2(现在匹配到4.1.9)结果的同时,计算速度提升10倍以上。 ctDNA变异检测分析 以下给出的步骤脚本,主要针对ctDNA和其他高深度测序的样本数据(2000-5000x
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现,集成预测
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,
难判断算法 A 是否比算法 B 在给定的任务上做得更好。 当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法允许我们使用所有的样本估计平均测试误差,代价是增加了计算量。这些过程是基于在原始数据上随机采样或分离出的不同数据集上重复训练和测试的想法。最常见的是
算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep
x 处单位体积内训练样本的数目除以训练样本的总数。如果我们希望对一个样本进行分类,我们可以返回相同网格中训练样本最多的类别。如果我们是做回归分析,我们可以平均该网格中样本对应的的目标值。但是,如果该网格中没有样本,该怎么办呢?因为在高维空间中参数配置数目远大于样本数目,大部分配置没
以获得更好的效果2 小样本与大样本检测比较分别列出基于Pascal VOC、MS-COCO数据集上的识别结果对比。对于Pascal VOC,小样本检测已取得不错效果;而对于检测难度较大的COCO数据集(41%小目标),基于小样本的检测效果明显弱于大样本,还有很大的提升空间。3
难题的方法。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构市值不断改善自身的性能的学科,简单地说,机器学习就是通过算法,使得机器能从大量的历史数据中学习规律,从而对新的样本做智能识别或预测
信号的样本熵序列计算 样本熵(Sample Entropy,SampEn)是通过度量信号中产生新模式的概率大小来衡量时间序列复杂性,新模式产生的概率越大,序列的复杂性就越大。样本熵的值越低,序列自我相似性就越高;样本熵的值越大,样本序列就越复杂。样本熵适合于对随机过程的研究,目前
for xs,ys in zip(x_data,y_data): xs=xs.reshape(1,12) #变形为和占位符一样,这里一次一行样本 ys=ys.reshape(1,1) _,loss=sess.run([optimizer,loss_function],feed_dict={x:xs
人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快
深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用和待解决的问题;可解释AI的研究方向和进展。
(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana
深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获
什么是神经网络 我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。 假设你有一个数据集,它包含了六栋房子的信息。所以,你