内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习随机取样、学习

    样本都可以被载入内存,那可以通过对样本索引进行相应的处理抽样就可以达到样本抽样的效果。在语音处理任务,若无法将所有样本载入内存进行计算,可以采用滚动窗的方法每次加载一块数据进内存,然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计

    作者: 运气男孩
    1443
    5
  • 分享深度学习发展的学习范式——混合学习

     这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能

    作者: 初学者7000
    739
    1
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 分享深度学习发展的学习范式——混合学习

        这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因

    作者: 初学者7000
    828
    3
  • ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本

    ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本     目录 输出结果 实现代码       输出结果 1、对数据集进行特征映射 2、正则化 → 正则化 → 过度正则化   实现代码 import numpy as npimport

    作者: 一个处女座的程序猿
    发表时间: 2021-03-30 15:47:02
    525
    0
  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习和非监督学习之间的界限。由于缺少标签数据和收集标签数据集的高成本,它通常用于业务环境。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    929
    1
  • 深度学习应用开发学习

    能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习的聚类算法,让我意识到它在日常生活的广泛应用,比如超市货架的商品摆放。课程还介绍了

    作者: 黄生
    22
    0
  • 机器学习深度学习

    部所需的规则,而且在此过程必然会涉及到一些困难的概念,比如对毛茸茸的定义。因此,更好的方式是让机器自学。深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新

    作者: QGS
    678
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    347
    1
  • 不惧噪音环境、提升样本效率,最新强化学习成果入选NeurIPS 2020

    pdf这篇论文首次探索了有模型强化学习该「何时使用模型」,并基于不确定性预估提出全新算法 M2AC(Masked Model-based Actor-Critic),在样本效率和噪音环境下的表现均取得巨大突破。在连续控制任务,M2AC 仅用 model-free 方法 SAC 1/5 的交互样本就能达到同等效果。有噪音环境下,在之前的

    作者: 大赛技术圈小助手
    326
    0
  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”

    作者: 小强鼓掌
    736
    1
  • 深度学习之监督学习算法

    或者结构化输出问题称为监督学习。支持其他任务的密度估计通常被称为无监督学习学习范式的其他变种也是有可能的。例如,半监督学习,一些样本有监督目标,但其他的没有。在多实例学习样本的整个集合被标记为含有或者不含有该类的样本,但是集合单独的样本是没有标记的。

    作者: 小强鼓掌
    863
    2
  • 深度学习学习

    1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就

    作者: 小强鼓掌
    452
    2
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习深度学习界以外的微分

    深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse

    作者: 小强鼓掌
    438
    0
  • 深度学习应用开发》学习笔记-14

    global_variable_initializer()然后开始迭代训练,训练的内容,是每次将样本逐个输入模型,进行梯度下降优化操作。这里为了演示,每轮迭代后绘制出模型曲线(这里有点不清楚的地方,是将样本输入模型?还是训练得到了模型?我觉得是前者,训练得到的只是参数值,模型不是训练出来的)训练代码:for

    作者: 黄生
    625
    2
  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • Flow被首次用于零样本学习

    F,即可下载访问下载1:动手学深度学习在CVer公众号后台回复:动手学深度学习,即可下载547页《动手学深度学习》电子书和源码。该书是面向中文读者的能运行、可讨论的深度学习教科书,它将文字、公式、图像、代码和运行结果结合在一起。本书将全面介绍深度学习从模型构造到模型训练,以及它们

    作者: HWCloudAI
    发表时间: 2020-10-14 03:17:20
    4779
    0
  • UpdateSamples 批量更新样本标签 - API

    该API属于ModelArts服务,描述: 批量更新样本标签,包括添加、修改和删除样本标签。当请求体单个样本的“labels”参数传空列表时,表示删除该样本的标签。接口URL: "/v2/{project_id}/datasets/{dataset_id}/data-annotations/samples"

  • 深度学习之平滑先验

    距离拉大时而减小。局部核可以看作是执行模版匹配的相似函数,用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将输入空间分成和叶节点一

    作者: 小强鼓掌
    1194
    1