检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
务场景中,特别是垂直领域、特定行业中,训练样本数量不足的问题广泛存在,极大地影响这些模型在下游任务的准确度,因此,预训练语言模型学习到的大量知识无法充分地发挥出来。本项目实现基于预训练语言模型的小样本数据调优,从而解决大模型与小训练集不相匹配的问题。 小样本学习是机器学习领域未来
第2章打造对抗样本工具箱对抗样本是深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学
文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)
在小批量中加载一个样本,然后随机抽样应用于网络中所有输入和隐藏单元的不同二值掩码。对于每个单元,掩码是独立采样的。掩码值为 1 的采样概率(导致包含一个单元)是训练开始前一个固定的超参数。它不是模型当前参数值或输入样本的函数。通常在每一个小批量训练的神经网络中,一个输入单元被包括的概率为
零样本学习(Zero-shot learning, ZSL)作为学习无标注类别的一种方法,是当前计算机视觉领域重要的前沿分支之一。大部分零样本学习的方法通过构建视觉特征和语义特征之间的映射关系或是通过生成模型(GAN、VAE等)生成不可见类样本的方式来解决零样本学习任务。根据经验
深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称
见的对抗样本生成算法是已知的,训练数据集也是已知的,那么可以通过常见的一些对抗样本工具箱,比如AdvBox 或者FoolBox,在训练数据的基础上生成对应的对抗样本,然后让深度学习模型重新学习,让它认识这些常见的对抗样本,这样新生成的深度学习模型就具有了一定的识别对抗样本的能力。与Adversarial
集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。 ROC曲线绘制: (1)根据每个测试样本属于正样本的概率值
信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation
Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前
使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分
全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到
加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库
于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图中的最长路径的
在传统loss的基础上,约束正负例之间的Embedding距离。但是模型没有直接对正负例的Embeding做约束,而是通过约束正例与query之间的距离与正负例之间的距离,达到加大正负例之间Embedding距离的目的。 由于Loss将正负例之间的距离与query与正例之
变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习
这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能
2020 在深度学习时代,基于少量数据学习视觉模型具有非常强大的挑战性。目前大部分小样本学习方法都是基于已知类数据学习视觉模型,然后迁移到新的小样本数据中。这类方法学习的是一个通用模型,没有针对目标任务进行特定的学习,因此在是配到不同目标任务上表现不佳。这篇文章提出了基于集合学习的方法
深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化