内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用深度学习技术取得了优越性能以往机器学习技术在应用要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1
  • 样本学习在文心ERNIE3.0多分类任务应用--提示学习

    务场景,特别是垂直领域、特定行业,训练样本数量不足的问题广泛存在,极大地影响这些模型在下游任务的准确度,因此,预训练语言模型学习到的大量知识无法充分地发挥出来。本项目实现基于预训练语言模型的小样本数据调优,从而解决大模型与小训练集不相匹配的问题。 小样本学习是机器学习领域未来

    作者: 汀丶
    发表时间: 2022-11-11 06:09:06
    312
    0
  • 《零样本学习:突破瓶颈,开启智能新征程》

    式模型可以通过生成新的样本数据来帮助机器进行学习。在零样本学习,机器可以利用生成式模型来生成新的样本数据,从而弥补样本不足的问题。例如,在图像识别,可以通过生成式模型生成新的图像样本,从而提高对新类别的识别和分类能力。 零样本学习的未来展望 零样本学习作为人工智能领域的重要研

    作者: 程序员阿伟
    发表时间: 2024-12-28 23:12:23
    125
    0
  • 《从GRPO看强化学习样本效率的飞跃!》

    在强化学习的宏大版图样本效率始终是高悬的难题,如同在贫瘠的土地上渴望丰收,智能体想要从有限的交互样本挖掘出足够的知识,从而找到最优策略,谈何容易。传统强化学习算法往往需要海量的样本数据,才能让智能体在复杂的环境摸索出有效的行为模式,这一过程不仅耗时费力,还在许多实际应用场

    作者: 程序员阿伟
    发表时间: 2025-03-07 17:48:45
    0
    0
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习之Bagging学习

    在小批量中加载一个样本,然后随机抽样应用于网络中所有输入和隐藏单元的不同二值掩码。对于每个单元,掩码是独立采样的。掩码值为 1 的采样概率(导致包含一个单元)是训练开始前一个固定的超参数。它不是模型当前参数值或输入样本的函数。通常在每一个小批量训练的神经网络,一个输入单元被包括的概率为

    作者: 小强鼓掌
    1254
    2
  • 请问样本在哪里上传?

    请问在哪里上传病毒样本?直接发论坛里可能不太合适

    作者: 金牌饲养员
    24
    1
  • 时序对齐预测的监督表示学习与少样本序列分类

    列表示学习,我们展示了用各种度量学习损失训练的 TAP 以更快的推理速度实现了具有竞争力的性能。对于小样本动作分类,我们将 TAP 作为基于度量学习的episode训练范式的距离度量。这种简单的策略取得了与最先进的小样本动作识别方法接近的结果。https://openreview

    作者: 可爱又积极
    1974
    2
  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 深度学习之“深度

            深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型包含多少层,这被称

    作者: ypr189
    1571
    1
  • 《AI安全之对抗样本入门》

    见的对抗样本生成算法是已知的,训练数据集也是已知的,那么可以通过常见的一些对抗样本工具箱,比如AdvBox 或者FoolBox,在训练数据的基础上生成对应的对抗样本,然后让深度学习模型重新学习,让它认识这些常见的对抗样本,这样新生成的深度学习模型就具有了一定的识别对抗样本的能力。与Adversarial

    作者: 华章计算机
    发表时间: 2019-06-17 14:56:38
    25641
    0
  • 深度学习——常用评价指标

    集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据正负样本的分布也可能随着时间变化。  ROC曲线绘制:  (1)根据每个测试样本属于正样本的概率值

    作者: QGS
    784
    3
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics),20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    966
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2443
    1
  • 目标引导的人类注意力估计提升零样本学习

    样本学习(Zero-shot learning, ZSL)作为学习无标注类别的一种方法,是当前计算机视觉领域重要的前沿分支之一。大部分零样本学习的方法通过构建视觉特征和语义特征之间的映射关系或是通过生成模型(GAN、VAE等)生成不可见类样本的方式来解决零样本学习任务。根据经验

    作者: 可爱又积极
    1314
    1
  • 深度学习简介

    信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation

    作者: 某地瓜
    1685
    1
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 什么是深度学习

    于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图的最长路径的

    作者: 角动量
    1546
    5
  • 深度学习应用开发》学习笔记-10

    变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习,机器学习

    作者: 黄生
    1431
    3