检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 大模型微调训练类问题
评测NLP大模型 创建NLP大模型评测数据集 创建NLP大模型评测任务 查看NLP大模型评测报告 管理NLP大模型评测任务 父主题: 开发盘古NLP大模型
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无
看评测任务的基本信息及评测概览。 其中,各评测指标说明详见NLP大模型评测指标说明。 导出评测报告。 在“评测报告 > 评测明细”页面,单击“导出”,可选择需要导出的评测报告,单击“确定”。 单击右侧“下载记录”,可查看导出的任务ID,单击操作列“下载”,可将评测报告下载到本地。
的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。 单个评测集:由用户指定评测指标(F1分数、准去率、BLEU、Rouge)并上传评测数据集进行评测。 选择“单个评测集”时需要上传待评测数据集。 评测结果存储位置
管理NLP大模型评测任务 管理评测任务 在评测任务列表中,任务创建者可以对任务进行克隆(复制评测任务)、启动(重启评测任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,可进行如下操作:
创建NLP大模型评测数据集 NLP大模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程
了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似
相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理解,因此,提示词中包含的关键词、句式和语境如果与训练数据中的模式接近,模型能够“回忆”并运用已学习的知识和指令。 不同模型间效果差异。 由于不同厂商采用的训练策略
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古预测大模型支持的具体操作: 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-Predict-Table-Cla-2
科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古CV大模型支持的具体操作: 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-CV-ObjectDetection-N-2
Prop,可以调整学习率。取值范围:(0,1)。 权重衰减系数 通过在损失函数中加入与模型权重大小相关的惩罚项,鼓励模型保持较小的权重,防止过拟合或模型过于复杂,取值需≥0。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。
操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-N
大规模数据集,从而帮助用户快速提升模型性能。 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。通过自动化的评测机制,用户可以在训练过程中持续监控模型的精度、召回率等关键指标,及时发现潜在问题并优化调整。评测功能能够帮助用户在多种应用场景下验证模型的准确性与可靠性。
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随
更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本
大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts Studio平台训练、评测不同模型时,存在不同数据量的限制。以NLP大模型为例,请参考《用户指南》“开发盘古NLP大模型 > 使用数据工程构建NLP大模型数据集”。