检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo.yaml文件内容。 PPO强化训练,先进行RM奖励训练任务后,复制ppo_yaml样例模板内容覆盖demo.yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练、Re
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
5模型的训练过程,包括Finetune训练、LoRA训练和Controlnet训练。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.908版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 Finetune训练使用单机8卡资源。
模型训练 自动学习训练作业失败 父主题: 自动学习
于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:[pt、sft、rm、ppo、dpo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练,dpo代表DPO训练。
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法
旨在减少具有低秩表示的可训练参数的数量。权重矩阵被分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作业配置超参。超参指的是模型训练时原始数据集中实际字段和算法需要字段之间的映射关系。
同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。 离散值评估结果 包含
如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例: 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。
它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。
使用ModelArts时,用户数据需要存放在自己OBS桶中,但是训练代码运行过程中不能使用OBS路径读取数据。 原因: 训练作业创建成功后,由于在运行容器直连OBS服务进行训练性能很差,系统会自动下载训练数据至运行容器的本地路径。所以,在训练代码中直接使用OBS路径会报错。例如训练代码的OBS路径为obs://b
迁移过程使用工具概览 基础的开发工具在迁移的预置镜像和开发环境中都已经进行预置,用户原则上不需要重新安装和下载,如果预置的版本不满足要求,用户可以执行下载和安装与覆盖操作。 模型自动转换评估工具Tailor 为了简化用户使用,ModelArts提供了Tailor工具,将模型转换、
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
8.14 问题7:训练过程中报“an exception occurred : ('copy_d2d:build/xxx NPU function error” 错误截图: 报错原因:开启虚拟内存导致,虚拟内存不兼容某些训练场景如PPO、基于lora微调增量训练等 解决措施:关闭虚拟内存
成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题:
1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。