检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907)
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
准备环境 准备代码 准备数据 准备镜像环境 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
准备代码 准备镜像环境 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
FAQ CUDA和CUDNN run.sh脚本测试ModelArts训练整体流程 ModelArts环境挂载目录说明 infiniband驱动的安装 如何保证训练和调试时文件路径保持一致 父主题: 专属资源池训练
DockerFile构建镜像(可选) 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
资源类型(flavor_type),对应值可选择CPU、GPU或Ascend; 是否支持多卡训练(device_distributed_mode),对应值可选择支持(multiple)、不支持(singular); 是否支持分布式训练(host_distributed_mode),对应值可选择支持(mu
模型训练计费项 计费说明 在ModelArts进行模型训练时,会产生计算资源和存储资源的累计值计费。计算资源为训练作业运行的费用。存储资源包括数据存储到OBS或SFS的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。
权限问题 训练作业访问OBS时,日志提示“stat:403 reason:Forbidden” 日志提示"Permission denied" 父主题: 训练作业
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多机共同访问同一存储硬盘资源。ModelArts Lite Server
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多机共同访问同一存储硬盘资源。ModelArts Lite Server
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多机共同访问同一存储硬盘资源。ModelArts Lite Server
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多机共同访问同一存储硬盘资源。ModelArts Lite Server
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户如果购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多机共同访问同一存储硬盘资源。ModelArts Lite
dataset size. 原因分析 数据集过少,导致训练失败。 其中,增量预训练会packing,将短sample拼成seq_len长度进行训练,因此原数据条数多不意味着处理后samples多。 问题影响 训练失败或者训练结果与预期不符。 处理方法 增加数据集数量。 父主题: Studio
最大时间:2262-04-11 23:47:16.854775807,需注意上下界限。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地I
├── tokenizer_config.json └── visual.py 对于Qwen-VL模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 父主题: 准备工作
“确定”,完成训练作业创建。 进入“训练管理 > 训练作业”页面,等待训练作业完成。 训练作业运行需要几分钟时间,请耐心等待。根据经验,选择样例数据集,使用GPU资源运行,预计3分钟左右可完成。 当训练作业的状态变更为“已完成”时,表示已运行结束。 您可以单击训练作业名称,进入详