检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
设置用于CarbonData查询的Executor个数、CPU核数以及内存大小。 如何调优 在银行方案中,为每个执行器提供4个CPU内核和15GB内存,可以获得良好的性能。这2个值并不意味着越多越好,在资源有限的情况下,需要正确配置。例如,在银行方案中,每个节点有足够的32个CPU核,而只有64GB的内存,这个内
SparkSession,详见SparkSession原理。 Structured Streaming,详见Structured Streaming原理。 小文件优化。 聚合算法优化。 Datasource表优化。 合并CBO优化。 父主题: Spark2x
配置Spark HA增强高可用 配置Spark事件队列大小 配置parquet表的压缩格式 使用Ranger时适配第三方JDK 使用Spark小文件合并工具说明 配置流式读取Spark Driver执行结果 父主题: 使用Spark2x(MRS 3.x及之后版本)
集群的日志记录,通过云审计服务(Cloud Trace Service,CTS)实现。CTS是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建和配置追
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
TTL变更 场景1:TTL周期由小变大方案: 方案1:新建一张TTL时间为最新时间的表结构相同但名不同的表,把原表的数据导入新表,交换表名字; 方案2:业务代码中异步下发CK的修改TTL语句,下发之后业务代码不需要等待执行结果 1)类似在shell中,nohup sh xx.sh
adoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 海量结构化数据分析汇总。 将复杂的MapReduce编写任务简化为SQL语句。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、SEQUENCEFILE、ORC等存储格式。 Hive
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
command”的值,例如“oozie_shell.sh”,然后单击“添加”。 单击“文件+”,添加Shell命令执行文件或Oozie样例执行文件,可以选择存储在HDFS的文件或本地文件。 若文件存储在HDFS上,选择“.sh”文件所在路径即可,例如“user/hueuser/shell/oozie_shell.sh”。
由浅入深,带您玩转MRS 01 了解 了解华为云MRS服务的产品优势和应用场景,有助于您更准确地匹配实际业务,更快速地选择所需的组件,帮助您构建海量数据信息处理分析的一站式企业级大数据集群。 产品介绍 什么是MRS MRS应用场景 MRS集群组件版本一览表 MRS约束限制说明 MRS集群组件介绍
置动态资源池。 OBS存储开启本地缓存 OBS数据存储场景可根据业务需求配置本地缓存,提升读取速率,配置单盘100GB本地缓存示例:—data_cache=/srv/BigData/data1/impala:100GB HDFS存储开启短路读 HDFS存储场景下可开启短路读,提升
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。
hiveobs 数据冗余存储策略 多AZ存储:数据冗余存储至多个可用区(AZ),可靠性更高。 单AZ存储:数据仅存储在单个可用区(AZ),成本更低。 单AZ存储 策略 并行文件系统的读写策略。 私有 归档数据直读 通过归档数据直读,您可以直接下载存储类别为归档存储的文件,而无需提前恢复。
HBase支持对同一张表的数据进行冷热分离存储。用户在表上配置数据冷热时间分界点后,HBase会依赖用户写入数据的时间戳(毫秒)和时间分界点来判断数据的冷热。数据开始存储在热存储上,随着时间的推移慢慢往冷存储上迁移。同时用户可以任意变更数据的冷热分界点,数据可以从热存储到冷存储,也可以从冷存储到热存储。 图1 HBase冷热分离原理图
Flume日志采集概述 Flume是一个分布式、可靠和高可用的海量日志聚合的系统。它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。支持在系统中定制各类数据发送方,用于收集数据。同时,提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
置为0,会关闭此功能。由于批处理中分区中插入记录的数量众多,总会出现小文件。Hudi提供了一个选项,可以通过将对该分区中的插入作为对现有小文件的更新来解决小文件的问题。此处的大小是被视为“小文件大小”的最小文件大小。 104857600 byte hoodie.copyonwrite
Elasticsearch-Hadoop (ES-Hadoop) 连接器将Hadoop海量的数据存储和深度加工能力与Elasticsearch实时搜索和分析功能结合在一起。 它能够让您快速深入了解大数据,并让您在Hadoop生态系统中更好地开展工作。 方案架构 Hive是建立在Hadoop上的数据仓库框架,提供