检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的部分(home/ma-user/work目录的内容)不会保存在最终产生的容器镜像中。VS Code远程开发场景下,在Server端安装的插件不丢失。 当镜像保存失败时,请在Notebook实例详情页查看事件,事件描述请参考查看Notebook实例事件。 建议保存的镜像大小不要超
推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.911软件包中的AscendCloud-AIGC-6.3.911-xxx.zip 文件名中的xxx
数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
size、dtype、device、layout信息的数据,详情请参见PyTorch docs介绍。所以同样是在device侧做变量初始化引入精度偏差,在diffusion/gaussian_diffusion.py中用等CPU侧初始化实现替换完成计算之后再切回device进行计算(下图第731行)。
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
Wav2Lip 支持如下模型基于DevServer的PyTorch NPU的训练: Qwen-VL LLaVA SDXL&SD1.5 ComfyUI插件基于DevServer适配PyTorch NPU推理指导(6.3.906) LLaVA模型基于DevServer适配PyTorch NPU推理指导(6
Optimization):是一种在强化学习中广泛使用的策略优化算法。它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training
S磁盘上。 使用ModelArts VSCode插件调试训练ResNet50图像分类模型 MindSpore VS Code Toolkit工具 目标检测 本案例以Ascend Model Zoo为例,介绍如何通过VS Code插件及ModelArts Notebook进行云端数据调试及模型开发。
的:首先,数据问题可能导致不收敛,比如数据预处理不完善;其次,模型的训练超参数也同样会导致类似的情况;再者,模型本身的算法设计过程也可能会引入不收敛情况;最后,则是由计算过程导致的模型收敛问题。 模型精度(以模型评测结果衡量的各种指标,广义的Model Accuracy),是多种
Profiling Data项中输入性能数据所在的Notebook本地或OBS路径,单击Submit按钮。界面参考下图。 图6 对比两份性能数据 性能诊断插件支持设置高级参数,当前支持的高级参数列表如下表所示。 表1 高级参数介绍 序号 键 默认值 是否必填 说明 1 cann_version 8
SMTP服务器所开放的端口,用于发送邮件。 基于安全考虑,TCP 25端口出方向默认被封禁,申请解封请参考TCP 25端口出方向无法访问时怎么办?。 HTTP 80 使用HTTP协议访问网站。 POP3 110 使用POP3协议接收邮件。 IMAP 143 使用IMAP协议接收邮件。
decoder中进行解码得到输出的视频帧。 判别器Visual Quality Discriminator对生成结果的质量进行规范,提高生成视频的清晰度。 引入预训练的唇音同步判别模型Pre-trained Lip-sync Expert,作为衡量生成结果的唇音同步性的额外损失,可以更好的保证生成结果的唇音同步性。
作流运行方式。具体请参见什么是Workflow。 Standard的开发环境Notebook提供了云上JupyterLab环境和本地IDE插件,方便用户编写训练推理代码,并使用云上资源进行代码调试。具体请参见Notebook使用场景。 Standard的模型训练功能提供了界面化的
txt”的内容如下所示。 手感很好,反应速度很快,不知道以后怎样 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面 没充一会电源怎么也会发热呢音量健不好用回弹不好 算是给自己的父亲节礼物吧物流很快下单不到24小时就到货了耳机更赞有些低音炮的感觉入耳很紧不会掉棒棒哒 标注
推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 文件名中的xxx
如何在ModelArts的Notebook的CodeLab上安装依赖? ModelArts CodeLab中已安装Jupyter、Python程序包等多种环境,您也可以使用pip install在Notebook或Terminal中安装依赖包。 在Notebook中安装 在总览页面进入CodeLab。
LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。 这种方法主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制
动上传训练输出至指定的训练输出路径,请保证您设置的桶路径有写入权限和读取权限。 在ModelArts中,训练代码需包含以下步骤: (可选)引入依赖 当您使用自定义脚本创建算法的时候,如果您的模型引用了其他依赖,您需要在“算法管理 > 创建算法”的“代码目录”下放置相应的文件或安装包。