检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
roup pip.conf /home/ma-user/.pip/pip.conf # 设置容器镜像预置环境变量 # 将python解释器路径加入到PATH环境变量中 # 请务必设置PYTHONUNBUFFERED=1, 以免日志丢失 ENV PATH=${ANACONDA_D
“MA_LOG_DIR=/home/ma-user/modelarts/log” MA_SCRIPT_INTERPRETER 训练脚本解释器。 “MA_SCRIPT_INTERPRETER=” WORKSPACE 训练算法目录。 “WORKSPACE=/home/ma-user/
资源池分为公共资源池与专属资源池。 公共资源池供所有租户共享使用。 专属资源池需单独创建,不与其他租户共享。 实例规格 选择实例规格,规格中描述了服务器类型、型号等信息。 更多选项 永久保存日志 选择是否打开“永久保存日志”开关。 开关关闭(默认关闭):表示不永久保存日志,则任务日志会在30
是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架 是,选用ZeRO (Zero Redundancy Optimizer)优化器 ZeRO-0,配置以下参数 deepspeed: examples/deepspeed/ds_z0_config.json ZeRO-1,
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的
是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数 deepspeed: examples/deepspeed/ds_z0_config.json ZeRO-1
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,确保之前启动服务为vllm接口,
${docker_ip}替换为容器实际的IP地址。可以在宿主机上通过docker inspect容器ID |grep IPAddress命令查询。 Step5 服务调用 在浏览器中输入http://ip:8443访问界面,页面如下图。 图3 访问界面 双击访问页面,并搜索“Ascend”,单击“AscendNode”,如下图。
meta-llama/Llama-2-70b-chat-hf --revision <模型版本> --local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git
${docker_ip}替换为容器实际的IP地址。可以在宿主机上通过docker inspect容器ID |grep IPAddress命令查询。 Step5 服务调用 在浏览器中输入http://ip:8080访问界面,页面如下图。 图3 访问界面 加载Ascend插件节点来替换原节点。双击访问页面,并搜索“Asc
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
meta-llama/Llama-2-70b-chat-hf --revision <模型版本> --local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参