检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。 文档准备镜像步骤中,仅提供:直接使用基础镜像方案、ECS中构建新镜像方案,删除使用Notebook创建镜像方案。 文档中新增对 llama3 支持长序列文本(sequence_length >
false:不导出图片到版本输出目录(默认值) extract_serial_number Boolean 发布时是否需要解析子样本序号,用于医疗数据集。可选值如下: true:解析子样本序号 false:不解析子样本序号(默认值) include_dataset_data Boolean 发布时是否包含数据集源数据。可选值如下:
本方案支持的模型列表、对应的开源权重获取地址如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
false:不导出图片到版本输出目录(默认值) extract_serial_number Boolean 发布时是否需要解析子样本序号,用于医疗数据集。可选值如下: true:解析子样本序号 false:不解析子样本序号(默认值) include_dataset_data Boolean 发布时是否包含数据集源数据。可选值如下:
used_percent 该指标用于统计k8s空间的使用率。 百分比(Percent) ≥0 连续2个周期原始值 > 90% 紧急 请及时检查,防止磁盘写满影响业务。推荐清理计算节点无效数据。 容器空间的总量 ma_node_container_space_capacity_megabytes
确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 Template 支持模型参数量 权重文件获取地址 Llama2 llama2 llama2-7b https://huggingface.co/meta-l
Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。请参见弹性集群k8s Cluster。 弹性裸金属:弹性裸金属提供不同型号的xPU裸金属服务器,您可以通过弹性公网IP进行访问,在给定的操作系统镜像上可以自行安装GPU&NPU相关的驱动和其他软件,使用SFS或OBS进行数据存储和读
访问Notebook。 SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 swr_path 是 String SWR镜像地址。 visibility 否 String 镜像可见度,默认值PRIVATE。枚举值: PRIVATE:私有镜像。 PUBLIC: 所有用
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
04-x86_64 引擎版本一:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 镜像地址:swr.{region_id}.myhuaweicloud.com/atelier/tensorflow_2_1:tensorflow_2
Abnormal:节点不正常 Checking: 节点自检中 az String 节点所在的可用区。 privateIp String 节点的IP地址。 resources NodeResource object 节点资源量信息。 availableResources NodeResource
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step6 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints