检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。
置,配置网络后可通过公网访问集群资源。 2 配置kubectl工具 kubectl是Kubernetes集群的命令行工具,配置kubectl后,您可通过kubectl命令操作Kubernetes集群。 3 配置Lite Cluster存储 如果没有挂载任何外部存储,此时可用存储空
subjects: - kind: ServiceAccount name: prometheus namespace: default 执行如下命令创建RBAC对应的各个资源。 $ kubectl create -f prometheus-rbac-setup.yml clusterrole
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
#ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3.9.10 bash install.sh 在/home/ma-user/Ascend
化权限项,具体操作请参见创建ModelArts自定义策略。 检查OBS桶是否具备权限。 下方步骤描述中所致的OBS桶,指创建自动学习项目时,指定的OBS桶,或者是创建项目时选择的数据集,其数据存储所在的OBS桶。 检查当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控
上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/mnt/sfs_turbo,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。
上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/mnt/sfs_turbo,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。
ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量、图像、计算图以及模型超参等信息,同时提供训练
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 若已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3fn"。dty
图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3fn"。dty
抽取kv-cache量化系数 注意: 1、抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3fn"。d
用户的专属资源池没有进行网络打通,或者用户没有创建过SFS。 处理方法 在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS VPC。详情页面的“NAS VPC名称”和“NAS 子网ID”如果为空则证明没有开启,单击右上角配置NAS VPC即可。
本不匹配”。 原因分析 当昇腾规格的训练作业在ModelArts训练平台上运行时,会自动对Cann软件与Ascend驱动的版本匹配情况进行检查。如果平台发现版本不匹配,则会立即训练失败,避免后续无意义的运行时长。 解决方案 专属资源池的Ascend驱动版本需与训练基础镜像中的Cann软件版本版本匹配。
图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3fn"。dty
/activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip install Shapely 父主题: 环境配置相关