检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如何避免因管理不善导致专项资金重大损失浪费?"], "target": "福田区社会建设专项资金使用过程中,如何保障专项资金的使用事项为重点。管理人员应建立责任所在意识,制定科学规范的使用办法,强
大模型使用类问题 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的具体文件进行上传 如何查看预置模型的历史版本
导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压缩、部署、评测、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域:
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
使用盘古应用百宝箱生成创意活动方案 场景描述 该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下:
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
使用“能力调测”调用科学计算大模型 能力调测功能支持用户调用预置或训练后的科学计算大模型。使用该功能前,请完成模型的部署操作,步骤详见创建科学计算大模型部署任务。 使用“能力调测”调用科学计算大模型可实现包括全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球
使用“能力调测”调用NLP大模型 能力调测功能支持用户调用预置或训练后的NLP大模型。使用该功能前,请完成模型的部署操作,步骤详见创建NLP大模型部署任务。 使用“能力调测”调用NLP大模型可实现文本对话能力,即在输入框中输入问题,模型将基于问题输出相应的回答,具体步骤如下: 登录ModelArts
度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。
可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
大气、陆地和海洋气候变量的估计值。 ERA5数据下载官方指导:https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5 高空变量数据下载链接:https://cds.climate.copernicus.eu/da
部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
单击画布中的开始节点以打开节点配置页面。 开始节点的参数默认已配置,不支持修改开始节点的参数。 图1 开始节点配置图 步骤3:配置大模型节点 大模型节点提供了使用大模型能力,可在节点中配置已部署的模型,用户可以通过编写Prompt、设置参数让模型处理相应任务。 大模型节点为可选节点,若无需配置,可跳过该步骤。
文本翻译失效 可能原因:如图3,提问器节点的Prompt指令配置有误,指令中的参数与节点配置的输出参数不对应。 图3 提问器节点配置错误示例 解决方法:按照图4,正确配置提问器节点的指令,配置正确后的试运行效果如图5。 图4 提问器节点配置正确示例 图5 试运行效果 父主题: 低代码构建多语言文本翻译工作流
性。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平