检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
关的原始数据,确保数据的覆盖面和多样性。例如,若是自然语言处理任务,可能需要大量的文本数据;如果是计算机视觉任务,则需要图像或视频数据。 数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。
申请试用盘古大模型服务 盘古大模型为用户提供了服务试用,需提交试用申请,申请通过后试用盘古大模型服务。 登录ModelArts Studio大模型开发平台首页。 在首页单击“试用咨询”,申请试用盘古大模型服务。 图1 申请试用 父主题: 准备工作
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型主要用于。 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度
使用“能力调测”调用NLP大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP大模型部署任务。 NLP大模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP大模型 表1 NLP大模型能力调测参数说明
添加插件后,可在“高级配置”中查看当前已添加的插件。 创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 配置插件的基本信息,
如何调整推理参数,使盘古大模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
开发盘古大模型Agent应用 Agent开发平台概述 手工编排Agent应用 创建与管理工作流
使用API调用NLP大模型 模型部署成功后,可以通过“文本对话”API调用NLP大模型。 表1 NLP大模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions
帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都
使用API调用科学计算大模型 使用API调用科学计算大模型步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
横向比较提示词效果 将设置为候选的提示词横向比对,获取提示词的差异性和效果。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
压缩NLP大模型 模型在部署前,通过模型压缩可以降低推理显存占用,节省推理资源提高推理性能。当前仅支持对NLP大模型进行压缩。采用的压缩方式是INT8,INT8量化压缩可以显著减小模型的存储大小,降低功耗,并提高计算速度。 登录ModelArts Studio大模型开发平台,进入所需操作空间。
创建NLP大模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“NLP大模型”
其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧
工作流简介 Agent平台工作流由多个组件构成,组件是组成工作流的基本单元。例如,大模型、插件、代码、判断等组件。 创建工作流时,工作流默认包含了开始、结束和大模型组件,每个组件需要配置不同的参数,如组件配置、输入和输出参数等。基于该工作流,开发者可通过拖、拉、拽可视化组件等方式