检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
华为云MapReduce服务(MRS) 华为云MapReduce服务(MRS)是华为云提供的大数据服务,可以在华为云上部署和管理Hadoop系统,一键即可部署Hadoop集群。
数据格式规范 推荐系统OBS文件夹规范 离线数据源 实时日志 全局特征信息文件 父主题: 用户指南(旧版)
数据质量管理 数据结构 数据导入 数据探索 父主题: 数据源管理
数据质量 数据质量检测算子,是用户在进行离线计算之前使用原始初始格式数据(离线数据源中的离线数据)或者通用格式数据检测输入数据是否合法。包括离线数据中是否包含特殊字符,数据类型是否正确,是否缺少必备信息等。 前提条件 已将离线数据上传至OBS桶中。
平台资源API 绑定依赖资源 获取资源列表 解绑依赖资源 创建跨源连接 获取跨源连接 删除跨源连接 开启公共终端节点 父主题: API(V1不推荐)
推荐系统OBS文件夹规范 使用推荐系统时,需要在OBS创建桶并导入离线数据,同时作业所产生的数据也会保存在OBS中。为了方便您快速定位文件路径,建议您按照如下结构准备数据创建文件夹,并上传至OBS桶。
离线数据源 调用RES之前,您需要准备3种基础数据包并上传至OBS,离线数据源目前支持CSV和JSON。具体数据包请参见表1 基础数据表。
实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。
什么是推荐系统 推荐系统(Recommender System,简称RES) ,基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。
推荐系统(Recommender System,简称RES)基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 父主题: 基础问题
数据源管理 数据源管理简介 准备离线数据源 上传离线数据源至OBS 上传实时数据 创建离线数据源 导入近线数据源 数据质量管理 修改或删除数据源
提交数据质量作业 提交数据质量作业API 查询全局特征配置 父主题: 作业相关API
当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。
数据源 RES的离线数据源包括什么? 如何上传数据至OBS 如何上传实时数据? 离线数据和近线实时数据如何配合使用? 数据探索是什么?近线实时数据如何在数据探索中的报告体现? 如何确定近线数据源导入实时数据成功? 实时数据能否立即应用到推荐场景?
数据源 创建数据源 查询数据源列表 查询数据源详情 修改数据源内容 修改数据源特征 删除数据源 查询数据源任务结果 父主题: API
在使用推荐系统之前,您需要开通数据湖探索(Data Lake Insight,简称DLI)来创建集群。 DLI服务 登录华为云。在华为云“产品”页签,选择“大数据>数据湖探索DLI”,进入DLI产品页。单击“进入控制台”,授权开始使用DLI。 ModelArts服务 登录华为云。
基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 您可以使用本文档提供推荐系统服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如推荐系统的具体接口使用说明。
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
数据导入 数据导入介绍 数据导入即读取经过“数据结构”生成的数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要的宽表和画像数据。
DLI创建集群操作详请参见数据湖探索用户指南>Spark作业控制台>Spark集群管理>创建集群章节。 CloudTable创建集群操作详请参见表格存储服务用户指南> 集群模式> 集群操作指导> 创建集群章节。
召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐;如果不选择,将生成全局热度推荐。