检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理工作流 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“工作流”页签中,鼠标右键单击工作流,进行工作流的复制、复制ID、删除。 父主题: 创建与管理工作流
具备。 评估作业员 拥有数据工程数据评估-评估作业模块的所有权限,其余角色不具备。 数据导入员 拥有数据工程数据获取-数据导入模块的所有权限,其余角色不具备。 数据加工员 拥有数据工程数据加工模块的所有权限,其余角色不具备。 数据发布员 拥有数据工程数据发布模块的所有权限,其余角色不具备。
功能介绍 支持调用科学计算大模型创建海洋类模型的推理作业。 URI 获取URI方式请参见请求URI。 POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。
域和行业的完善云服务安全保障体系。 安全性是华为云与您的共同责任,如图1所示。 华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等
支持调用科学计算大模型创建气象/降水模型的推理作业。 URI 获取URI方式请参见请求URI。 POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。
户高效地规划和分配任务,使团队协作更加高效。 此外,平台配备了完善的角色权限体系,覆盖超级管理员、管理员、模型开发工程师等多种角色。通过灵活的权限设置,每位用户能够在其对应的权限范围内安全高效地操作平台功能,从而最大程度保障数据的安全性与工作效率。 父主题: 创建并管理盘古工作空间
管理科学计算大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:
创建科学计算大模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“科学计算大模型”,参考表1完成部署参数设置,启动模型部署。
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。 要查看预置模型的历史版本,您可以按照以下步骤操作: 进入平台的“空间资产 > 模型 > 预置”页面。 在该
变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 数据配置 训练数据 选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。
管理NLP大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:
导出模型 导入盘古大模型至其他局点 导入盘古大模型至其他局点前,请确保当前空间为该用户所创建的空间。 导入模型功能可以将其他局点训练的模型导入本局点进行使用,也可以导入第三方大模型至ModelArts Studio大模型开发平台。 导入模型前,请参考导出盘古大模型至其他局点完成模型导出操作。
手工编排Agent应用流程 手工编排Agent应用流程步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“应用”页签,单击右上角“创建应用”。 您也可以鼠标单击已有
选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,然后利用大模型(如盘古提供的任意规格的基础功能模型)采用s
异常的Loss曲线:平缓且保持高位 Loss曲线异常抖动:Loss曲线异常抖动的原因可能是由于训练数据质量差,比如数据存在噪声或者分布不均衡,导致训练过程不稳定。你可以尝试提升数据质量的方式来解决。 图5 异常的Loss曲线:异常抖动 父主题: 大模型微调训练类问题
统计模型调用信息 针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
微调方式选择建议: 若项目中数据量有限或任务场景较为广泛,可以选择LoRA微调以快速部署并保持较高适用性。 若拥有充足数据且关注特定任务效果,选择全量微调有助于大幅提升在特定任务上的模型精度。 当前平台提供的NLP大模型的训练方式仅支持微调,不支持预训练。 父主题: 训练NLP大模型
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。