检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune #
选择优先级1和2,配置了“设置作业为高优先级权限”的用户可选择优先级1~3。 如何设置训练作业优先级 在创建训练作业页面可以设置训练的“作业优先级”。取值为1~3,默认优先级为1,最高优先级为3。 如何修改训练作业优先级 在训练作业列表页面,选择“状态”为“等待中”的训练作业,单
如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如果机器与容器镜像仓库不在同一区域,则上传镜像走公网链路,机器需要绑定弹性公网IP。 使用客户端上传镜像,镜像的每个layer大小不能大于10G。
用户给ModelArts的委托中没有SWR相关操作权限 用户为子账号,没有主账号SWR的权限 使用的是非自己账号的镜像 使用的镜像为公开镜像 处理方法 到SWR检查下对应的镜像是否存在,对应镜像的镜像地址是否和实际地址一致,大小写,拼写等是否一致。 检查用户给ModelArts的委托
3551:数据输入或者输出的obs目录不存在 ModelArts.3567:使用的数据输入或者输出obs目录存在,但是当前账号无权限访问 处理方法 ModelArts.3551:到obs检查输入数据目录是否存在,如果不存在,请按照实际需要创建obs目录;如果检查发现目录存在,但依然报同样的错,可以提工单申请技术支持
45CAA1A71019C9D0 retry:0 原因分析 出现该问题的可能原因如下: OBS服务的权限出现问题,导致无法正常读取数据 处理方法 请检查OBS权限配置,如未解决问题可参考OBS文档的已配置OBS权限,仍然无法访问OBS(403 AccessDenied)。 建议与总结
输入有效的GitHub开源仓库地址 Clone仓库的过程中会将进度展示出来。 图4 Clone仓库的过程 Clone仓库成功。 图5 Clone仓库成功 异常处理 Clone仓库失败。可能是网络原因问题。可以在JupyterLab的Terminal中通过执行git clone https://github
${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune #
${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune #
智能边缘平台(Intelligent EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。 ModelArts支持将模型通过智能边缘平台IEF,在边缘节点将模型部署为一个Web服务。您可以通过API接口访问边缘服务。
通过API接口选择自定义镜像导入创建模型,配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装 python、python3-pip
置一样,则会报错。 若第二次增量训练的epochs数值小于第一次常规训练的epochs数值,则增量训练会出现少训练一个epoch的现象。 处理方法 第二次增量训练设置的epochs数值需要大于第一次常规训练设置的epochs数值。 举例:对一个已经完成的训练作业(假设训练了50个
出现该问题的可能原因如下: 用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_CODE”并将对应的值设置成0,就可以将预检功能关闭。环境变量说明参考查看训练容器环境变量。
在开发环境(notebook)申请相同规格的开发环境实例。 在notebook调试用户代码,并找出问题的代码段。 通过关键代码段 + 退出码尝试去搜索引擎寻找解决办法。, 通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。 再次运行作业,判断出问题的代码段。
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
设置知识库的本地路径。 工具扫描结果解读 AI CPU算子分析和处理 MA-Advisor工具分析结果的html文件中会有下述链接,提供AI CPU算子相关问题的修复指导和案例。 图17 AI CPU算子分析和处理 亲和API替换 MA-Advisor工具分析结果的html文件中
个时间完成的,然后有的节点没有复制完,其他节点进行torch.distributed.init_process_group()导致超时。 处理方法 如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch.distributed.ini
了错误。 用户代码问题,出现了内存越界、非法访问内存空间的情况。 未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。
用户选择了1/2/4卡这些规格的作业,然后设置了CUDA_VISIBLE_DEVICES=‘1’这种类似固定的卡ID号,与实际选择的卡ID不匹配。 处理方法 尽量代码里不要去修改CUDA_VISIBLE_DEVICES变量,用系统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格
re-initialize CUDA in forked subprocess 原因分析 出现该问题的可能原因如下: multiprocessing启动方式有误。 处理方法 可以参考官方文档,如下: """run.py:""" #!/usr/bin/env python import os import torch