检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非
的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、
如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
op modelarts:dataset:updateDataset - √ √ 表14 处理任务的细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 查询处理任务列表 GET /v2/{project_id}/processor-tasks mode
GPU卡损坏的情况,导致实际能检测到的卡少于所选规格。 处理方法 建议直接根据系统分卡情况下传进去的CUDA_VISIBLE_DEVICES去设置,不用手动指定默认的。 如果发现资源节点中存在GPU卡损坏,请联系技术支持处理。 建议与总结 在创建训练作业前,推荐您先使用Model
Standard Workflow 如何定位Workflow运行报错
Lite Cluster Cluster资源池如何进行NCCl Test?
开发环境 环境配置故障 实例故障 代码运行故障 JupyterLab插件故障 VS Code连接开发环境失败故障处理 自定义镜像故障 其他故障
存储相关 在ModelArts中如何查看OBS目录下的所有文件?
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
40606190017-b881580 CANN:cann_8.0.rc2 PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创
历史文档待下线 ModelArts与其他服务的关系 如何上传数据至OBS?
FAQ 使用ModelArts时提示“权限不足”,如何解决? 父主题: Standard权限管理
场景包括计算机视觉、视频处理、NLP等 “GPU: 1*Pnt1(16GB)|CPU: 8核 64GB”:GPU单卡规格,16GB显存,适合深度学习场景下的算法训练和调测 Ascend规格 有Snt9(32GB显存)单卡、两卡、八卡等规格。配搭ARM处理器,适合深度学习场景下的模型训练和调测。
若您已有CCE集群,但CCE集群版本低于1.23,则可参考升级集群的流程和方法,建议将集群升级至1.28版本。 默认规格 CPU架构 CPU架构指的是中央处理器(CPU)的指令集和设计规范。支持X86和ARM64两种不同的CPU架构。请根据实际需要选择。 实例规格类型 支持CPU、GPU、Asc
JupyterLab插件故障 git插件密码失效如何解决? 父主题: 开发环境(新版Notebook)