检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
给子账号配置文件夹级的SFS Turbo访问权限 场景描述 本文介绍如何配置文件夹级的SFS Turbo访问权限,实现在ModelArts中访问挂载的SFS Turbo时,只允许子账号访问特定的SFS Turbo文件夹内容。 给子账号配置文件夹级的SFS Turbo访问权限为白名
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
# 多机之间使用gloo通信时需要指定网口名称, export TP_SOCKET_IFNAME=enp67s0f5 # 多机之间使用TP通信时需要指定网口名称 export HCCL_SOCKET_IFNAME=enp67s0f5 # 多机之间使用HCCL通信时需要指定网口名称
# 多机之间使用gloo通信时需要指定网口名称, export TP_SOCKET_IFNAME=enp67s0f5 # 多机之间使用TP通信时需要指定网口名称 export HCCL_SOCKET_IFNAME=enp67s0f5 # 多机之间使用HCCL通信时需要指定网口名称
存在多个部门,且需要限定不同部门的用户只能访问其专属资源、功能 存在多种角色(如管理员、算法开发者、应用运维),希望限制不同角色只能使用特定功能 逻辑上存在多套“环境”且相互隔离(如开发环境、预生产环境、生产环境),并限定不同用户在不同环境上的操作权限 其他任何需要对特定子用户(组)做出特定权限限制的情况
阶段 相关文档 1 Notebook连接大数据服务特性 介绍如何将ModelArts Notebook开发环境与华为云大数据服务DLI中的Spark引擎相连接,让数据工程师能便捷地使用Notebook进行大数据开发,以及如何在DataArts Studio服务配置Notebook文件定时调度任务。
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL推理。
生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 本文档主要介绍如何利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL的LoRA微调训练。 资源规格要求 推荐使用“西南-
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
文件中也可以只有原始文件信息,没有标注信息,如生成的未标注的数据集。 Manifest文件使用UTF-8编码,Manifest处理程序需具备UTF-8处理能力。 Manifest文件中文本分类的source数值可以包含中文,其他字段不建议用中文。 Manifest文件可以由用户、
String 实例私有IP地址。 表12 Image 参数 参数类型 描述 arch String 该镜像所支持处理器架构类型。枚举值如下: X86_64:x86处理器架构。 AARCH64:ARM体系架构。 create_at Long 镜像创建的时间,UTC毫秒。 description
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜像包,镜像包规范可参考创建模型的自定义镜像规范。
单击页面右上角的“费用”进入“费用中心”页面。 在“总览”页面可以查看到当前的欠费金额。 如果存在欠费,请及时充值。更多关于欠费还款操作,请参见如何进行欠费还款。 父主题: 计费FAQ