检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
存储配置 选择“云硬盘EVS”。 磁盘规格 按照对应的存储使用情况选择存储大小。 SSH远程开发 如果需通过VS Code远程连接Notebook实例,可打开SSH远程开发,并选择自己的密钥对。 在Notebook列表,单击“操作”列的“打开”,打开Notebook实例。 克隆ModelArts
CLI配置工具包(云服务器) 如果是在ModelArts Lite等云服务器安装Gallery CLI配置工具,则参考本节将工具包下载至云服务器。 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 左侧菜单栏选择“我的资源 > 云服务器”,单击专属资源池页签进入云服务详情页面。
VPC下创建弹性云服务器 登录弹性云服务器ECS控制台,单击右上角“购买弹性云服务器”,进入购买弹性云服务器页面,完成基本配置后单击“下一步:网络配置”,进入网络配置页面,选择1中打通的VPC,完成其他参数配置,完成高级配置并确认配置,下发购买弹性云服务器的任务。等待服务器的状态变为
加载带来的I/O挑战,华为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,并将生成的结果数据
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别8
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别8
ECS获取基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:C
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 该方式的训练流程与直接基于预置框架创建的训练作业相同,例如:
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
可调用的API,此API为标准Restful API。 通过VPC高速访问通道的方式访问在线服务:使用VPC直连的高速访问通道,用户的业务请求不需要经过推理平台,而是直接经VPC对等连接发送到实例处理,访问速度更快。 在线服务的API默认为HTTPS访问,同时还支持以下的传输协议:
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
调用启动智能任务接口给图像分类的数据集创建一个智能标注任务。 调用获取智能任务的信息接口根据智能标注的任务ID查询任务详情。 待智能标注任务完成后,调用查询智能标注的样本列表接口可以查看标注结果。 调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM的EndPoi
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch