检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
基于边缘部署准备工作与注册边缘资源池节点,按照以下目录结构存放下载文件,注意修改下载文件的命名。其中,docker下的certs证书会自动生成,一般无需修改。 pkgs // 包目录,用户自行命名 docker docker.tgz // docker 二进制文件,要求版本>19
盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1GB,所有文件的总大小不得超过200GB。 表1
sdk出现json解析报错 图1 json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于N2的模型(盘古-NLP
GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。
一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
AgentAction包含Agent的工具选择、工具执行结果、思考等信息,AgentSessionStatus为一个枚举,包含Agnet的执行状态。建议直接对Agent的run接口的返回进行修改,以控制Agent的行为。如果想控制中间过程,可以对Agent的runStep的返回进行修改。 通过监听终止Agent的执行
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
panguAgent.run("帮我定个今天下午3点到8点的A02会议室"); Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个今天下午3点到8点的A02会议室 助手: A02会议室在今天下午3点到8点已经被预定了。是否需要为您预定其他时间段或者其他会议室?
DocSplit为例。 其中,filePath指的是需要解析的文档路径;mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。 2 - 根据内容里的章节条分段,适合制度类文档。 3 - 根据长度
盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大
越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让
PANGUDOC); 其中,filePath指的是需要解析的文档路径,mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。 2 - 根据内容里的章节条分段,适合制度类文档。 3 - 根据长度
包周期计费 预付费 按照订单的购买周期结算。 按订单的购买周期计费。 推理服务 包周期计费 预付费 按照订单的购买周期结算。 按订单的购买周期计费。 训练服务 按需计费 后付费 先使用再付费。 计费公式:实际消耗的Token数量 * Token单价 Token计算精确到1K Tokens,不足1K
run("帮我定个下午3点到8点2303会议室") Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个下午3点到8点2303会议室 助手: 好的,2023-11-17 15:00到2023-11-17 20:00的2303会议室已为您预定成功。
eployments/{deployment_id} (/chat/completions在SDK代码中已经进行了设置)。 IAM endpoint需要根据服务所在的区域正确配置,参考帮助文档“终端节点”章节查找。 参考IAM帮助文档,获取账号相关信息。 华为云Gallery托管三方模型
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 表3 请求Body参数 参数 是否必选 参数类型 描述 data 是 List<String> 待统计Token数的字符串。List长度必须为奇数。
前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx