检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 datasets 是 String 每个可信计算节点的数据集名 features
通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述
企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,
企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4
阶段五:基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi +
查询敏感数据的结果可见,可由该提供方进行识别,并进行拒绝操作。 图1 审批详情 在审批详情中也可看到两个字段相加的情况,如下图所示。 图2 字段相加 通过查看字段是否可见,以及字段用途,能够确认该字段的应用是否符合自己的安全预期。 父主题: 基于TICS实现端到端的企业积分查询作业
通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的
join ZZZZZZ.power_data b on a.id = b.id TICS会识别并提示。 图4 执行失败告警 上述隐私规则,均为TICS系统提供的默认规则。 父主题: 基于TICS实现端到端的企业积分查询作业
基于TICS实现端到端的企业积分查询作业 简介 阶段一:数据发布 阶段二:隐私规则防护 阶段三:审批防护 阶段四:基本计算能力验证 阶段五:基于MPC算法的高安全级别计算 阶段六:统计型作业的差分隐私保护
EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。 前提条件
EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。 前提条件
感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图
简介 背景信息 本案例以“小微企业信用评分”的场景为例。 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。
业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。
group by industry 统计分析型的作业,可能被作业执行方通过增删某个碰撞的id,得到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护,