检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
L”时才会生效。 auth_type 否 String 授权类型。可选值有PUBLIC、PRIVATE、INTERNAL。默认值为PUBLIC。 PUBLIC:租户内部公开访问。 PRIVATE:仅创建者和主账号可访问。 INTERNAL:创建者、主账号、指定IAM子账号可访问,需要与grants参数配合使用。
在本地PyCharm中已有训练代码工程。 已在OBS中创建桶和文件夹,用于存放数据集和训练输出模型。 例如:创建命名为“test-modelarts2”的桶,创建文件夹“dataset-mnist”和“mnist-output”。训练作业使用的数据已上传至OBS,且OBS与ModelArts在同一区域。
为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,并将生成的结果数据异步持久化到OBS对象存储中长期低成本保存。
e_url和engine_id无需填写。 boot_file_url 是 String 训练作业的代码启动文件,需要在代码目录下,如:“/usr/app/boot.py”。应与app_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
} ] } 策略JSON格式字段介绍 策略结构 策略结构包括Version(策略版本号)和Statement(策略权限语句)两部分,其中Statement可以有多个,表示不同的授权项。 图1 策略结构 策略参数 下面介绍策略参数详细说明。了解策略参数后,您可以根据
件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 命令参数预览 ma-cli dli-job submit -h
输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好
参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 说明 status 否 String 作业状态的查询,默认为所有状态,例如查看创建失
的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
创建APP 功能介绍 创建API网关应用(简称APP),每个用户最多只能创建5个APP,有需求可以申请增加配额。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST
ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量、图像、计算图以及模型超参等信息,同时提供训练看板、模
选择训练作业代码存储位置 鼠标放至作业列表处,单击作业列表旁边的打开创建训练作业页面。 图5 创建作业入口 (可选)设置中转目录:中转目录支持OBS路径和SFS盘挂载路径。如果已经在步骤3配置,此处会自动显示中转目录。 如果设置的是OBS路径,单击“提交作业”后,插件会自动将当前打开的项目文件整体上传至OBS中转目录上。
有输入(对应Human角色)和输出(对应MOSS角色)。其中Human和MOSS仅用于角色区分,模型训练的内容只有text指代的文本。 xlsx和csv格式 表格里的一行数据就是一条样本。表格中仅有3个字段:conversation_id、human和assistant。 con
次数、LOSS和吞吐数据按照“迭代次数|loss|吞吐”格式记录在日志中,AI Gallery通过环境变量找到日志,从中获取实际数据绘制成“吞吐”和“训练LOSS”曲线,呈现在训练的“指标效果”中。具体请参见查看训练效果。 说明: 日志文件中的迭代次数、LOSS和吞吐数据必须按照
修复Standard专属资源池故障节点 Standard专属资源池支持对故障节点进行修复操作,目前提供了替换节点、高可用冗余节点、重置节点和重启节点等方式。华为云技术支持在故障定位和性能诊断时,部分运维操作需要用户授权才可进行,本章节同时也介绍了如何进行授权操作。 故障节点处理方式 替换节点:替换节
的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据处理类型“数据选择”
不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 支持的模型列表和权重文件 本方案支持vLLM的v0.3.2版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称 支持vLLM v0.3.2
的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
控制台左上角切换区域,查看对应的资源。 可用区 可用区是同一服务区内,电力和网络互相独立的地理区域,一般是一个独立的物理机房,这样可以保证可用区的独立性。是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。