检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提示工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了
在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。
安装Ascend插件 详情请参考官方文档:https://www.hiascend.com/document/detail/zh/mindx-dl/50rc1/dluserguide/clusterscheduling/dlug_scheduling_02_000001.html
用户认证信息就是创建集群时设置的用户/密码。 Elastic Search 否 集群host信息。 用户认证信息。 ES官网: https://www.elastic.co/cn/elasticsearch/ hosts示例:https://10.0.0.1:9200,https://10
当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com.huaweicloud.sdk</groupId>
文档问答 基于已有的知识库进行回答。有stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings
History History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户
add_docs(bulk_list) 通过vectorStoreConfig判断使用CSS的插件模式和非插件模式。如果配置了embedding模型,则使用非插件模式,否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
模型支持的操作 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩
build()); 通过vectorStoreConfig判断使用CSS的插件模式和非插件模式,如果配置了embedding模型,则使用非插件模式;否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
任务名称可以进入详情页查看训练指标、训练任务详情和训练日志。 图1 模型训练列表 不同类型的训练方法可支持查看的训练指标有所差异,训练指标和训练方法的关系如下: 表1 训练指标和训练方法对应关系 训练指标\模型类型 自监督训练 有监督训练 训练损失值 √ √ 模型准确率 × √ 指标看板
认证鉴权失败,请参考《API文档》认证鉴权章节重新进行认证。 PANGU.0012 auth info missing. 缺少身份验证信息。 请检查调用API时是否有传入认证鉴权信息。 PANGU.0031 Inner service exception. 服务内部异常。 请联系服务技术支持协助解决。 PANGU
乱码文本 过滤乱码字符占比超过阈值的文本。 汉字比率过滤 基于文档中汉字占比过滤数据。 目录\封面过滤 移除文本的目录和封面。 图注标注过滤 移除文本中的图标和标注信息。 参考文献过滤 移除文本中参考文献的信息。 数据去重 去重 移除文本中重复内容。 数据安全 数据脱敏 识别并对
AK/SK签名认证方式仅支持消息体大小12M以内,12M以上的请求请使用Token认证。 AK/SK认证就是使用AK/SK对请求进行签名,在请求时将签名信息添加到消息头,从而通过身份认证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。
N4-4K版本 1万条/每场景 4GB(等价10亿Tokens) 4096 有监督训练 在单次训练任务中,一个有监督数据集内,上传的数据文件数量不得超过100个,单文件大小不得超过1GB,所有文件的总大小不得超过1GB。 表2 有监督微调数据大小说明 模型规格 最小数据量(数据条数) 单场景推荐训练数据量
格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数
其中,训练配置选择LLM(大语言模型),训练类型选择有监督训练,根据所选模型配置训练参数。 表1 有监督微调参数说明 参数名称 说明 模型类型 选择“LLM”。 训练类型 选择“有监督微调”。 训练方式 全量微调:在模型有监督微调过程中,对大模型的全部参数进行更新。这种方法通常
可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型