检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4
了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4
置。 表1 参数说明 参数 说明 “授权对象类型” 包括IAM子用户、联邦用户、委托用户和所有用户。 IAM子用户:由主账号在IAM中创建的用户,是服务的使用人员,具有独立的身份凭证(密码和访问密钥),根据账号授予的权限使用资源。IAM子用户相关介绍请参见IAM用户介绍。 联邦用
5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。 代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中:
本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
昇腾云服务6.3.909版本说明 本文档主要介绍昇腾云服务6.3.909版本配套的镜像地址、软件包获取方式和支持的特性能力。 当前版本仅适用于华为公有云。 配套的基础镜像 芯片 镜像地址 获取方式 镜像软件说明 配套关系 Snt9B 西南-贵阳一 PyTorch: swr.cn-southwest-2
推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 表1 环境要求 名称 版本 CANN cann_8.0.rc2 PyTorch 2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-3rdAIGC-6
内容。增量训练通过保留旧知识的同时学习新知识来避免这个问题。 增量训练在很多领域都有应用,比如自然语言处理、计算机视觉和推荐系统等。它使得AI系统能够更加灵活和适应性强,更好地应对现实世界中不断变化的数据环境。 ModelArts Standard中如何实现增量训练 增量训练是通过Checkpoint机制实现。
在本地PyCharm中已有训练代码工程。 已在OBS中创建桶和文件夹,用于存放数据集和训练输出模型。 例如:创建命名为“test-modelarts2”的桶,创建文件夹“dataset-mnist”和“mnist-output”。训练作业使用的数据已上传至OBS,且OBS与ModelArts在同一区域。
的数量。权重矩阵被分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作业配置超参。超参指的是模型训练时原始数据集中实际字段和算法需要字段之间的映射关系。 当
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
的数据增强模型的能力和性能。允许模型逐步适应新的任务和数据,避免过拟合和欠拟合问题,进一步提高模型的泛化能力。 调优后模型名称 设置调优后产生的新模型的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、下划线(_)、中划线(-)和半角句号(.)。 调优后模型权重存放路径
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,并将生成的结果数据异步持久化到OBS对象存储中长期低成本保存。
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in
行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与in