检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
Huggingface缓存目录空间不足,出现OSError: [Errno 122] Disk quota exceeded 问题现象 报错提示OSError: [Errno 122] Disk quota exceeded。 原因分析 默认情况下,下载数据集缓存目录为“~/.cache
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
报错“Bad owner or permissions on C:\Users\Administrator/.ssh/config”或“Connection permission denied (publickey)”如何解决? 问题现象 报错“Bad owner or permissions
报错“Failed to install the VS Code Server.”或“tar: Error is not recoverable: exitng now.”如何解决? 问题现象 或 原因分析 可能为/home/ma-user/work磁盘空间不足。 解决方法 删除/
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 若本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 若本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常
连接远端开发环境时,一直处于"ModelArts Remote Connect: Connecting to instance xxx..."超过10分钟以上,如何解决? 问题现象 解决方法 单击“Canel”,并回到ModelArts控制台界面再次单击界面上的“VS Code接入
deepspeed多卡训练报错TypeError: deepspeed_init() got an unexpected keyword argument 'resume_from_checkpoint' 问题现象 deepspeed多卡训练报错TypeError: deepspeed_init
调用transformers出现ImportError: libcblas.so.3: cannot open shared object file: No such file or directory 问题现象 调用transformers出现“ImportError: libcblas.so
TensorFlow框架分布式训练的情况下,会启动ps与worker任务组,worker任务组为关键任务组,会以worker任务组的进程退出码,判断训练作业是否结束。 通过task name判断的哪个节点是worker。
如果实例的架构是x86_64的,通过下面的链接,手动修改Commit码(Commit码替换时去掉尖括号),使用浏览器下载vscode-server-linux-x64.tar.gz文件。
连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决? 问题现象 原因分析 通过查看日志发现本地vscode-scp-done.flag显示成功上传
训练运行报错AttributeError: 'torch_npu._C._NPUDeviceProperties' object has no attribute 'multi_processor_count' 问题现象 训练运行报错“AttributeError: 'torch_npu