检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局进行合作,获取政府部门提供的内部脱敏数据等。相关的数据格式包括但不限于:在线网页、离线word文档、离线txt文件
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人
重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-NLP-N1-Chat-32K-20241130
复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果,无中间的对话交互过程。适用于内容生成、批量翻译、数据分析等场景。
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古预测大模型支持的具体操作: 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-Predict-Table-Cla-2
在训练Agent所需的NLP大模型时,可以开启此参数。通过调整训练数据中的Prompt,引导模型在特定领域或任务上生成更符合预期的回答。 在使用此参数前,请先联系盘古客服,调整Prompt和训练数据。 模型保存步数 每训练一定数量的步骤(或批次),模型的状态将会被保存。可以通过以下公式预估已训练的数据量: token_num
Pangu-CV-ObjectDetection-N-2.1.0 2024年12月发布的版本,支持全量微调、在线推理。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古CV大模型支持的具体操作:
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古专业大模型支持的具体操作: 模型 预训练 微调 模型压缩 在线推理 能力调测 Pangu-NLP-BI-4K-20241130
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行训练,模型为用户与服务共建,详情请联系客服。 热身轮次 表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。
开始节点全局配置未传入值。 开始节点错误,请联系客服解决。 结束节点 101531 结束节点初始化失败。 检查结束节点配置,可能为校验报错。 101532 结束节点模板拼接失败。 先检查模板占位符与输入是否匹配,请联系客服解决。 101533 结束节点流式处理失败。 请联系客服解决。 大模型节点 101561
nk Adaptation)微调方法通过调整模型的少量参数,以低资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针对通用客服问答的场景中,样本量少且任务场景广泛,选择LoRA微调既能节省资源,又能获得较好的效果。 微调方式选择建议: 若项目中数据量有限或任务场景
其类别。适用于各种任务,如:积水检测、占道经营检测、人员离岗检测、动植物检测、工业缺陷检测等。 2024年12月发布的版本,支持全量微调、在线推理。 物体检测-N模型为中参数量模型,在保证计算效率的同时,具备较强的特征识别能力,提供高效的性能表现。 父主题: 训练CV大模型
模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,它
用于海洋基础要素预测 2024年11月发布的版本,支持在线推理、能力调测特性,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 用于区域海洋基础要素预测 2024年11月发布的版本,支持预训练、微调、在线推理、能力调测特性,1个训练单元起训及1个实例部署。
训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常? 为什么微调后的盘古大模型总是重复相同的回答? 盘古大模型是否可以自定义人设? 更多 大模型概念类 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面?
是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。 是 如果希望申请提升配额,请联系客服。 功能限制 盘古大模型服务的功能限制详见表3。 表3 功能限制 功能类型 使用限制 数据工程-数据格式要求 ModelArts Stud