表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 QwQ-32B 4 32 2 64 2 qwen2.5-vl-7B 1
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
API详细信息和比对结果。
CogVideoX1.5 5b 和 CogVideoX 5b模型基于Lite Server全量8卡序列并行推理指导(6.5.901) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX1.5 5b,CogVideoX 5b模型进行
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
0.5b-ov-hf 15 llava-onevision-qwen2-7b-ov-hf √ x x x x https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf 各模型支持的卡数请参见各模型支持的最小卡数和最大序列章节
您即将访问非华为云网站,请注意账号财产安全