检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
删除表后,表的所有属性信息全部会删除,包括生命周期。新建同名表后,表的生命周期以新设置的属性为准。 约束限制 表生命周期处于公测阶段,如果有需要请联系客服申请开通白名单。 使用生命周期前需要在“全局配置 > 服务授权 > 委托权限设置”中,对(Tenant Administrator(项目级))授权。
Upsert Kafka 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic中读取数据并将数据写入Kafka
设置多版本备份数据保留周期 功能描述 在DLI数据多版本功能开启后,备份数据默认保留7天,您可以通过配置系统参数“dli.multi.version.retention.days”调整保留周期。保留周期外的多版本数据后续在执行insert overwrite或者truncate语
位评测系统的整体商业计算综合能力,对厂商的要求更高,同时也具有普遍的商业实用意义,目前在银行信贷分析和信用卡分析、电信运营分析、税收分析、烟草行业决策分析中都有广泛的应用。 TPC-H 基准测试是由 TPC-D(由 TPC 组织于 1994 年制定的标准,用于决策支持系统方面的测
据和导出数据等操作,在系统中对应的执行实体,称之为SQL作业。 SQL作业适用于使用标准SQL语句进行查询的场景。通常用于结构化数据的查询和分析。 Flink作业 Flink作业专为实时数据流处理设计,适用于低时延、需要快速响应的场景。适用于实时监控、在线分析等场景。 Flink
Upsert Kafka结果表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。
作业管理页面。Spark作业管理页面显示所有的Spark作业,作业数量较多时,系统分页显示,您可以查看任何状态下的作业。 表1 作业管理参数 参数 参数说明 作业ID 所提交Spark作业的ID,由系统默认生成。 名称 所提交Spark作业的名称。 队列 所提交Spark作业所在的队列。
ID)/SK(Secret Access Key)加密调用请求。推荐使用AK/SK认证,其安全性比Token认证更高。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
消息通知服务(Simple Message Notification,简称SMN)为DLI提供可靠的、可扩展的、海量的消息处理服务,它大大简化系统耦合,能够根据用户的需求,向订阅终端主动推送消息。可用于连接云服务、向多个协议推送消息以及集成在产生或使用通知的任何其他应用程序等场景。S
进入Spark作业编辑页面,页面会提示系统将创建DLI临时数据桶。该桶用于存储使用DLI服务产生的临时数据,例如:作业日志、作业结果等。如果不创建该桶,将无法查看作业日志。可以通过配置生命周期规则实现定时删除OBS桶中的对象或者定时转换对象的存储类别。桶名称为系统默认。 如果不需要创建DLI
创建Hive Catalog 简介 Catalog提供了元数据信息,例如数据库、表、分区、视图以及数据库或其他外部系统中存储的函数和信息。 数据处理最关键的方面之一是管理元数据。 元数据可以是临时的,例如临时表、或者通过TableEnvironment注册的UDF。 元数据也可以是持久化的,例如Hive
区列的字段数据。分区表查询时需要指定分区字段,导致查询不到表数据。 问题根因 DLI分区内表在导入数据时,如果文件数据没有包含分区字段,则系统会默认指定分区值“__HIVE_DEFAULT_PARTITION__”,当前Spark判断分区为空时,则会直接返回null,不返回具体的数据。
创建source流从Kafka获取数据,作为作业的输入数据。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 确保已创建Kafka集群。 该场景作业需要
Redis结果表 功能描述 DLI将Flink作业的输出数据输出到Redis中。Redis是一种支持Key-Value等多种数据结构的存储系统。可用于缓存、事件发布或订阅、高速队列等场景,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。有关Redis的详细信息
数据捕获、运营和分析企业系统之间的数据复制、转换和验证。Ogg 为变更日志提供了统一的格式结构,并支持使用 JSON 序列化消息。 Flink 支持将 Ogg JSON 消息解析为 INSERT/UPDATE/DELETE 消息到 Flink SQL 系统中。在很多情况下,利用这个特性非常有用,例如
Redis结果表 功能描述 DLI将Flink作业的输出数据输出到Redis中。Redis是一种支持Key-Value等多种数据结构的存储系统。可用于缓存、事件发布或订阅、高速队列等场景,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。有关Redis的详细信息
DLI提供多版本功能,用于数据的备份与恢复。开启多版本功能后,在进行删除或修改表数据时(insert overwrite或者truncate操作),系统会自动备份历史数据并保留一定时间,后续您可以对保留周期内的数据进行快速恢复,避免因误操作丢失数据。其他多版本SQL语法请参考多版本备份恢复数据。
SQL作业访问报错:File not Found 问题现象 执行SQL作业访问报错:File not Found。 可能原因 可能由于文件路径错误或文件不存在导致系统无法找指定文件路径或文件。 文件被占用。 解决措施 检查文件路径、文件名。 检查文件的路径是否正确,包括目录名称和文件名。 文件被占用 文
流生态作业开发指引 流生态系统基于Flink和Spark双引擎,完全兼容Flink/Storm/Spark开源社区版本接口,并且在此基础上做了特性增强和性能提升,为用户提供易用、低时延、高吞吐的数据湖探索。 数据湖探索的流生态开发包括云服务生态、开源生态和自拓展生态: 云服务生态
DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka是线下集群,需要通过增强型跨源连