检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
astic Search)的方式快速实现问答系统,称为检索增强生成(Retrieval Augmented Generation,RAG)技术方案。检索增强生成方案被大量用在智能问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人
人工评测”页面。 当状态为“待评测”时,可以单击操作列“在线评测”进入评测页面。 依据页面提示对评估效果区域进行评测打分,全部数据评测完成后单击“提交”。 图1 人工评测示例 在“人工测评”页面,评测任务的状态将显示为“已完成”,单击操作列“评测报告”查看模型评测结果。 父主题: 评测NLP大模型
复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果,无中间的对话交互过程。适用于内容生成、批量翻译、数据分析等场景。
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-NLP-N1-Chat-32K-20241130
表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行训练,模型为用户与服务共建,详情请联系客服。 热身轮次 表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。
创建NLP大模型评测数据集 NLP大模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程
应用提示词生成面试题目 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 提示词应用示例
开始节点全局配置未传入值。 开始节点错误,请联系客服解决。 结束节点 101531 结束节点初始化失败。 检查结束节点配置,可能为校验报错。 101532 结束节点模板拼接失败。 先检查模板占位符与输入是否匹配,请联系客服解决。 101533 结束节点流式处理失败。 请联系客服解决。 大模型节点 101561
方案设计 虽然传统人工翻译可以提供高质量的结果,但其效率较低且成本高昂。相对而言,机器翻译虽然在速度和成本上具备优势,但在准确性和语境理解上仍存在一定的不足,例如,处理复杂、专业的内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻
在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,在“人工评估标准”页签,平台预置了视频类数据集评估标准“视频数据质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。 图1 预置视频类数据集评估标准 在“人工评估标准”页面,单击“创建标准”,选择预置标准作为参考项,并填写“评估标准名称”和“描述”。
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,它
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常? 为什么微调后的盘古大模型总是重复相同的回答? 盘古大模型是否可以自定义人设? 更多 大模型概念类 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面?
是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。 是 如果希望申请提升配额,请联系客服。 功能限制 盘古大模型服务的功能限制详见表3。 表3 功能限制 功能类型 使用限制 数据工程-数据格式要求 ModelArts Stud