检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据
时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判
已购买资源包,但使用量超出资源包额度或资源包属性与桶属性不匹配,进而产生按需费用,同时账户中的余额不足以抵扣产生的按需费用。请参考如何查看ModelArts中正在收费的作业?识别产生按需计费的原因,并重新选择正确的资源包或保证账户中的余额充足。 未购买资源包,在按需计费模式下账户的余额不足。 欠费影响 包年/包月
ModelArts自动学习与ModelArts PRO的区别是什么? 在ModelArts中图像分类和物体检测具体是什么? 在ModelArts自动学习中模型训练图片异常怎么办? 在ModelArts自动学习中,如何进行增量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作?
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
预测结果文件:文件格式为“xxx.manifest”,里面包含文件路径、预测结果等信息。 模型预测结果输出: 当输入为图片时,每张图片输出一个结果,输出结果格式为“图片名_result.txt”。例如:IMG_20180919_115016.jpg_result.txt。 当输入为音
API接口创建训练作业和部署服务时,如何填写资源池的参数? 调用API接口创建训练作业时,“pool_id”为“资源池ID”。 调用API接口部署在线服务时,“pool_name”为“资源池ID” 。 图1 资源池ID 父主题: API/SDK
像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 说明: 建议写清楚模型的使用方法,方便使用者更好的完成训练、推理任务。 表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务 AI应用 文本问答/文本生成 支持 支持 支持 其他类型
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
返回结果如图2所示:predict为目标列的预测结果。 图2 预测结果 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您
ModelArts.4711 数据集标注样本数满足算法要求 每个类别至少包含5张以上图片。 ModelArts.4342 标注信息不满足切分条件 出现此故障时,建议根据如下建议,修改标注数据后重试。 多标签的样本(即一张图片包含多个标签),至少需要有2张。如果启动训练时,设置了数据集切分功能,
bandwidth contention 通信维度,识别计算和通信相互掩盖,可能会抢占通信带宽。 communication - retransmission 通信维度,识别通信重传问题,单次重传耗时4秒以上。 memory 内存维度,识别异常内存算子。 dataloader 数据加载
get_data_to_numpy() print(outputs.shape) # (8, 1000) 动态分辨率 动态分辨率可以用于设置输入图片的动态分辨率参数。适用于执行推理时,每次处理图片宽和高不固定的场景,该参数需要与input_shape配合使用,input_shape中-1的位置为动态分辨率所在
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段文本的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避
s-input.jpg python onnx_pipeline.py 生成的图片fantasy_landscape.png会保存在当前路径下,该图片也可以作为后期精度校验的一个对比。 图2 生成图片 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段音频的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避