检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。
在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据, 也需要检查是否需要增加新的标签。 在图片都标注完成后,单击右上角“开始训练”,在“训练设置
sh命令后,会自动生成face_detection/detection/sfd目录。 Step6 服务调用 提前准备人物图片,支持'jpg', 'png', 'jpeg'格式。推荐测试图片大小1280*720或1920*1080。 提前准备音频文件audio,支持'wav', 'mp3', 'mp4'格式。
景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训
在“区域栏”可查看创建的OBS桶的所在区域。 查看ModelArts所在区域。 登录ModelArts控制台,在控制台左上角可查看ModelArts所在区域。 比对您创建的OBS桶所在区域与ModelArts所在区域是否一致。务必保证OBS桶与ModelArts所在区域一致。 检查您的账号是否有该OBS桶的访问权限
模型训练使用流程 AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。
用于智能标注的数据集必须存在至少2种标签,且每种标签已标注的图片不少于5张。 用于智能标注的数据集必须存在未标注图片。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注前要
mp、png四种图片格式。物体检测场景支持xml标注格式,不支持“非矩形框”标注。针对您提供的数据集,MetaValidation算子支持对图片和xml文件进行数据校验: 表1 图片类数据校验 异常情况 处理方案 图片本身损坏无法解码 过滤掉不能解码的图片 图片通道可能是1通道、2通道,不是常用的3通道
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
确保OBS中的文件是非加密状态 上传图片或文件时不要选择KMS加密,否则会导致数据集读取失败。文件加密无法取消,请先解除桶加密,重新上传图片或文件。 图3 OBS桶中的文件未加密 检查图片是否符合要求 目前自动学习不支持四通道格式的图片。请检查您的数据,排除或删除四通道格式的图片。 检查标注框是否符合要求(物体检测)
数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详情页,单击“已标注”页签,您可以查看已完成标注的图片列表。图片缩略图下方默认呈现其对应的标签,您也可以勾选图片,在右侧的“选中文件标签”中了解当前图片的标签信息。 查看已标注文本 在数据集详情页,单击“已标
查看特征分析结果 在特征分析结果中,例如图片亮度指标,数据分布中,分布不均匀,缺少某一种亮度的图片,而此指标对模型训练非常关键。此时可选择增加对应亮度的图片,让数据更均衡,为后续模型构建做准备。 数据标注 人工标注 在“未标注”页签图片列表中,单击图片,自动跳转到标注页面。 在标注页面
Standard数据准备 在ModelArts数据集中添加图片对图片大小有限制吗? 如何将本地标注的数据导入ModelArts? 在ModelArts中数据标注完成后,标注结果存储在哪里? 在ModelArts中如何将标注结果下载至本地? 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
String 文件名称。 source Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的m
入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参
ModelArts自动学习与ModelArts PRO的区别是什么? 在ModelArts中图像分类和物体检测具体是什么? 在ModelArts自动学习中模型训练图片异常怎么办? 在ModelArts自动学习中,如何进行增量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作?