检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
务控制台上完成。 更多裸金属服务器的介绍请见裸金属服务器BMS。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。
按需计费适用于资源需求波动的场景,例如面向ToC业务的AIGC推理场景,客户业务量会随时间有规律的波动,按需计费模式能大幅降低客户的业务成本。可在运行自动学习作业、Workflow工作流、创建Notebook实例、创建训练作业、部署模型服务等页面中选择适用的资源规格。 约束限制 按需计费的资源池不支持跨region使用。
ta 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。
大模型基于DevServer的推理通用指导》。 微调训练和预训练的区别 微调训练是在预训练权重的基础上使用指令数据集进行的,对模型权重进行学习调整。从而针对特定任务达到预期效果。 微调训练与预训练任务的区别主要包括: 使用的数据不同,微调使用的是指令数据集,在处理数据集时需要将--handler-name
MaaS大模型即服务平台功能介绍 对于普通企业来说,大模型开发不仅需要强大的算力,还需要学习训练、部署的相关参数配置和规格选择等专业知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支
查询自动学习资源规格无需此参数。 engine_id 否 Long 指定作业的引擎ID,默认为“0”。查询自动学习资源规格无需此参数。 project_type 否 Integer 项目类型。默认为“0”。 0:非自动学习项目。 1:自动学习,图像分类。 2:自动学习,物体检测。
系统会自动添加预置框架关联的超参。 使用预置框架构建训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。
expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-Ze
本案例用于指导用户使用ModelArts Studio大模型即服务平台(下面简称为MaaS)的Qwen2-7B模型框架,创建并部署一个模型服务,实现对话问答。通过学习本案例,您可以快速了解如何在MaaS服务上创建和部署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
止因运行Workflow工作流而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 自动学习:自动学习运行时会收取费用,使用完请及时停止自动学习、停止因运行自动学习而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 Notebook实例: 运行中的N
zip软件包中。 模型每次推理的图片数量必须是支持的batchsize,比如当前转换的mindir模型batchsize仅支持1,那么模型推理输入的图片数只能是1张;如果当前转换的mindir模型的batchsize支持多个,比如1,2,4,8,那么模型推理输入的图片数可以是1,2,4,8。
moondream2:/home/ma-user/ #复制moondream2目录到容器中 Step5 准备测试数据 需要用户自己准备测试图片。 将测试图片存放在宿主机/home/temp/data目录下,修改目录权限后,复制到容器中。 chmod -R 777 data #修改data目录权限
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
数为AppCode值 请求Body按照接口定义传参,本案例中KEY参数为images,选择为File格式,VALUE参数单击上传需要识别的图片。 图6 Headers 图7 Body 图8 返回结果 常见APP认证报错分析 报错信息 "error_msg": "The API does
expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-Ze
uUtil”、“memUsage”“npuMemUsage”、“npuUtil”,可以添加或取消对应参数的使用情况图。 操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 图1 资源占用情况 表1 参数说明 参数 说明 cpuUsage cpu使用率。 gpuMemUsage
导入的OBS路径或Manifest路径。 导入Manifest时,path必须精确到具体Manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、图像分割、文本分类、声音分类和表格数据集。 字符限制:不允许出现的特殊字符有换行符(\n)、回车符(\r)、制表符(\t)。
${container_name} bash 步骤六:启动推理 本章节介绍SD3模型的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token: huggingface-cli login 执行如下命令运行推理脚本启动SD3服务:
${container_name} bash Step5启动推理 本章节介绍SD3模型的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token: huggingface-cli login 执行如下命令运行推理脚本启动SD3服务:
在线服务部署完成后,您可以单击操作列的预测,进入服务详情页的“预测”页面。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”进行预测。此处提供一个预测样例图供使用。 步骤6:清除资源 为避免产生不必要的费用,通过此示例学习订阅算法的使用后,建议您清除相关资源,避免造成资源浪费。 停止在线服务:在“在线服