检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的
请先解除桶加密,重新上传图片或文件。 图3 OBS桶中的文件未加密 检查图片是否符合要求 目前自动学习不支持四通道格式的图片。请检查您的数据,排除或删除四通道格式的图片。 检查标注框是否符合要求(物体检测) 目前物体检测仅支持矩形标注框。请确保所有图片的标注框为矩形框。 如果使用非矩形框,可能存在以下报错:
登录ModelArts管理控制台,单击左侧导航栏的自动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据,
项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 音频标注 在新版自动学习页面单击“实例详情”按钮,前往数据标注页面。单击任意一张图片,进入音频标注页面。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧
标注的图片不少于5张。 启动智能标注时,必须存在未标注图片。 启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
样本目录的图片个数作为数据样本的种类数。 simlarity_threshold 否 0.9 相似度阈值。两张图片相似程度超过阈值时,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。 embedding_distance 否 0.2 样本特征间距。两张图片样本特征间距
"比对结果输出目录") 最终生成结果为similarities.csv表示每个Step各个权重参数两次比对相似度值,以及 {param_name}.png和summary_similarities.png以折线图方式表示各个Step相似度不比对结果。 详细工具的使用指导请参考梯度状态监控工具介绍。
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
景是夜晚,图片整体应该偏暗。 图片饱和度 Saturation 图片的色彩饱和度,值越大表示图片整体色彩越容易分辨。 一般呈正态分布,一般用于比较训练集和真实场景数据集的差异。 清晰度 Clarity 图片清晰程度,使用拉普拉斯算子计算所得,值越大代表边缘越清晰,图片整体越清晰。
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
Standard自动学习 ModelArts自动学习与ModelArts PRO的区别是什么? 在ModelArts中图像分类和物体检测具体是什么? 在ModelArts自动学习中模型训练图片异常怎么办? 在ModelArts自动学习中,如何进行增量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹?
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity Boolean 是否通过图片模糊度来聚类。 annotation_output String 主动学习标注结果输出路径。 collect_rule String 样本收集规则,默认为全量收集规则“all”。当前仅支持全量收集规则“all”。
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。 在您需要的自动学习项目列