检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
如果用户具备多个空间的访问权限,可在页面左上角单击切换空间。 图2 切换空间 管理盘古工作空间 盘古工作空间支持用户查看当前空间详情,修改空间名称与描述,还可以对不需要的空间实现删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 单击左侧导航栏的“空间管理”,在“空间设置”页签可执行如下操作:
创建多语言文本翻译插件流程 操作步骤 说明 步骤1:获取文本翻译服务Token与调用地址 本样例场景实现文本翻译服务Token与调用地址的获取。 步骤2:创建并配置多语言文本翻译插件 本样例场景实现多语言文本翻译插件的创建与配置。 步骤1:获取文本翻译服务Token与调用地址 在创建多语言
有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。 登录“我的凭证”页面,获取“IAM用户名”、“账号名”以及待使用区域的“项目ID”。调用服务时会用到这些信息,请提前保存。 由
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
模型调用:在模型部署后,用户可以通过模型调用功能快速访问模型的服务。平台提供了高效的API接口,确保用户能够方便地将模型嵌入到自己的应用中,实现智能对话、文本生成等功能。 父主题: 产品功能
创建盘古多语言文本翻译工作流流程 操作步骤 说明 步骤1:创建并配置多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的创建与配置。 步骤2:试运行多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的试运行。 步骤1:创建并配置多语言文本翻译工作流 登录ModelArts
鉴权的方式,需要提供密钥鉴权参数名和密钥值,安全性较低。 请求头 插件服务的请求头。添加请求的数据格式等说明,敏感信息请通过权限校验的方式实现。 自定义插件使用HTTP服务,或不增加鉴权方式可能存在安全风险。 单击“下一步”,在“参数信息”页面,参照表2完成参数配置。 表2 插件参数配置说明
景的流程型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agent:以工
设置为任意值,使用标准UUID格式。 图2 获取工作流调用路径-2 使用Postman调用API 获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入工作流的调用路径,详见获取调用路径。 填写请求Header参数。
自主调节,提供全方位的支撑和舒适度。\n\n亲爱的朋友们,快来选购这款轻便折叠户外椅,让你的户外生活更加舒适、随心随行!赶快单击下方链接,实现你的户外梦想!"} {"context":"产品:毛绒玩具\n特点:柔软可爱,陪伴成长,给孩子无限温暖的拥抱。\n请根据以上的内容和要求扩写一篇带货口播文案,注意:1
指令选择完成后,单击“确定”,并配置指令参数,包括“变量取值”、“保存至任务输出参数”、“模型选择”。 如图1,展示了预训练文本类数据集的合成指令参数配置示例,该合成任务实现利用预训练文本生成问答对。 图1 预训练文本类数据集合成指令参数配置示例 其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可
发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化。借助盘古大模型,程序员可以更加专注于创新和设计,而无需过多关注繁琐的编码
使模型能够在面对新挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融入新领域的特征和规律,实现对新任务的快速适应。这种能力极大地扩展了模型的应用范围,使其在更广泛的业务场景中发挥作用,为用户提供更加全面和深入的智能服务。
单击右上角“订阅数据”,在“从AI Gallery订阅”页面选择需订阅的数据资产,单击“下一步”。 填写资产名称与资产描述后,单击“确定”实现数据资产的订阅。 数据资产列表页将显示订阅数据资产的状态: 如果状态为“订阅中”,表示该资产正从AI Gallery同步中,请耐心等待。
l格式 对于文本类数据集,除文档、网页数据类型,其余类型的数据支持将自定义格式转换为jsonl格式。 用户可以上传自定义的python脚本实现数据集由自定义格式到jsonl格式的转换,页面中会提供脚本示例,可下载作为参考。 自定义格式转换的具体步骤为: 登录ModelArts S
重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时增加对重复输出的惩罚来实现的。如果模型生成了重复的文本,它的损失会增加,从而鼓励模型寻找更多样化的输出。 提示词工程相关概念 表4 提示词工程相关概念说明 概念名 说明
LoRA微调:适用于数据量较小、侧重通用任务的情境。LoRA(Low-Rank Adaptation)微调方法通过调整模型的少量参数,以低资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针对通用客服问答的场景中,样本量少且任务场景广泛,选择LoRA微调既能节省资源,又能获得较好的效果。