检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码
私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM 认证信息,根据实际填写
权限管理 如果您需要为企业员工设置不同的访问权限,以实现对华为云上购买的盘古大模型资源的权限隔离,可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,可以跳过本章节,不影响您使用服务的其他功能。
私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM 认证信息,根据实际填写
开启内容审核后,可以有效拦截大模型输入输出的有害信息,保障模型调用安全,推荐进行开启。 图3 大模型内容审核 盘古大模型支持通过对接内容审核,实现拦截大模型输入、输出的有害信息,保障模型调用安全。用户可依据需求选择是否开通、启用内容审核。 推荐用户购买内容审核套餐包,购买内容审核套餐包时,需要选择“文本内容审核”套餐。
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出,提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
训练完成后评估模型的回答效果。 创建模型评估任务 查看模型评估结果 查看模型评估指标和评估结果。 查看评估任务详情 模型压缩 - 通过模型压缩技术实现同等QPS目标下,降低推理显存占用。 压缩盘古大模型 模型部署 - 对模型执行部署操作。 部署盘古大模型 模型调用 使用“能力调测”调用模型
定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提问时,大模型就会根据用户的问题自动规划调用相应工具,从而实现对应的功能。 AI助手具备以下核心功能: 大模型调用能力:AI助手可以根据特定的指令调用NLP大模型,以改变AI助手的回复方式,使其更好地
langchain_core.outputs import LLMResult # 继承StreamCallbackHandler方法,实现流式输出 class TextStreamCallBack(StreamCallbackHandler): def __init__(self):
有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。 登录“我的凭证”页面,获取“IAM用户名”、“账号名”以及待使用区域的“项目ID”。调用服务时会用到这些信息,请提前保存。 由
及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam和pangu配置项。信息收集请参考准备工作。 # # Copyright (c)
发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化。 借助盘古大模型,程序员可以更加专注于创新和设计,而无需过多关注繁琐的编
安装依赖的组件包, pip install pangu_kits_app_dev_py gradio python-docx。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam和pangu配置项。信息收集请参考准备工作。 # # Copyright (c)
自主调节,提供全方位的支撑和舒适度。\n\n亲爱的朋友们,快来选购这款轻便折叠户外椅,让你的户外生活更加舒适、随心随行!赶快单击下方链接,实现你的户外梦想!"} {"context":"产品:毛绒玩具\n特点:柔软可爱,陪伴成长,给孩子无限温暖的拥抱。\n请根据以上的内容和要求扩写一篇带货口播文案,注意:1
使模型能够在面对新挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融入新领域的特征和规律,实现对新任务的快速适应。这种能力极大地扩展了模型的应用范围,使其在更广泛的业务场景中发挥作用,为用户提供更加全面和深入的智能服务。
重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时增加对重复输出的惩罚来实现的。如果模型生成了重复的文本,它的损失会增加,从而鼓励模型寻找更多样化的输出。 Prompt工程相关概念 表3 Prompt工程相关概念说明
语义缓存(同步适配langchain语义缓存暂时不支持expire_after_write) 语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 from
人工评测来评判,BLEU指标只能作为参考。 指标的缺陷 BLEU指标只考虑n-gram词的重叠度,不考虑句子的结构和语义。 模型优化建议 如何基于指标的分值对训练任务进行调整:一般横向比较两个模型时,可以参考该指标。然而,指标没有一个明确的阈值来指示何时模型效果差。因此,单靠该指标无法直接决定任务的调整策略。
@Builder.Default private int maximumSize = -1; 语义缓存:语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 import
的作用。 在调用盘古API前,需要先使用“获取Token”接口,获取Token值,再将Token值传入盘古API的请求header参数中,实现盘古服务在接收到用户的API请求时进行身份验证。 关于Token有效期的详细说明请参见获取IAM用户Token(使用密码)。 获取token步骤如下: