检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
ation/auto_awq.html。 Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
使用Workflow实现低代码AI开发 什么是Workflow 运行第一条Workflow 管理Workflow 开发第一条Workflow 开发Workflow命令参考
使用Grafana查看AOM中的监控指标 安装配置Grafana 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
ai/en/latest/quantization/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 步骤1:创建我的模型:使用基础模型创建自定义模型。 步骤2:部署模型服务:使用创建成功的自定义模型部署模型服务。 步骤3:在模型体验使用模型服务:在模型体验页面,体验部署的模型服务,进行对话问答。
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在ModelArts的Notebook中,访问外网速度不稳定怎么办? 为了方便AI开发者在使用Notebook时访问外部资源,ModelArts提供了一个免费的共享网络代理服务。借助这个代理,开发者可以更加便捷地下载所需的各类资源,助力开发工作的顺利进行。 由于该网络代理免费且共
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
Notebook中快速使用MoXing 本文档介绍如何在ModelArts中调用MoXing Framework接口。 进入ModelArts,创建Notebook实例 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间>Notebook”,进入“Notebook”管理页面。
享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资源。如需切换为GPU,请在右侧窗口,更换GPU规格。 在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用Ascend资源。 如果是AI
公共参数 状态码 错误码 获取项目ID和名称 获取帐号名和帐号ID 获取用户名和用户ID
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
ModelArts数据集新建的版本找不到怎么办? 版本列表是可以缩放的,请缩小页面后查找。 单击数据集名称,进入数据集概览页,在概览页选择“版本管理”,可对页面进行缩小。 父主题: Standard数据准备
在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ