检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建IAM用户并使用他们进行日常管理工作。 IAM用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可以查看账号ID和I
配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export
使用ModelArts Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业
ai/en/latest/quantization/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
ai/en/latest/quantization/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
ation/auto_awq.html。 Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
使用MoXing复制数据报错 问题现象 调用moxing.file.copy_parallel()将文件从开发环境的OBS桶中复制到其他OBS桶里,但是桶内没有出现目标文件。 使用MoXing复制数据不成功,出现报错。如: ModelArts开发环境使用MoXing复制OBS数据报错:keyError:
使用Workflow实现低代码AI开发 什么是Workflow 运行第一条Workflow 管理Workflow 开发第一条Workflow 开发Workflow命令参考
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
ai/en/latest/quantization/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_
署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 步骤1:创建我的模型:使用基础模型创建自定义模型。 步骤2:部署模型服务:使用创建成功的自定义模型部署模型服务。 步骤3:在模型体验使用模型服务:在模型体验页面,体验部署的模型服务,进行对话问答。
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在ModelArts的Notebook中,访问外网速度不稳定怎么办? 为了方便AI开发者在使用Notebook时访问外部资源,ModelArts提供了一个免费的共享网络代理服务。借助这个代理,开发者可以更加便捷地下载所需的各类资源,助力开发工作的顺利进行。 由于该网络代理免费且共