检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
TP:张量并行也叫层内并行,通过将网络中的权重切分到不同的设备,从而降低单个设备的显存消耗,使得超大规模模型训练成为可能。张量并行不会增加设备等待时间,除了通信代价外,没有额外代价。 PP:流水线并行将模型的不同层放置到不同的计算设备,降低单个计算设备的显存消耗,从而实现超大规模模型训练。流水线
init_context(device_type='ascend'): context = mslite.Context() context.target = [device_type] context.ascend.device_id = int(os
"system": "系统提示词(选填)", "tools": "工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。
//npu卡设备 --device=/dev/davinci3 //npu卡设备 --device=/dev/davinci4 //npu卡设备 --device=/dev/davinci5 //npu卡设备 --device=/dev/davinci6 //npu卡设备 --device=/dev/davinci7
同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,ModelArts支持将训练好的模型一键部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。
in/npu-smi --shm-size 60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --security-opt
弹性云服务器的对应的软件配套版本 表2 弹性云服务器 类型 卡类型 操作系统 适用范围 依赖插件 NPU ascend-snt3p-300i 操作系统:EulerOS 2.9 架构类型:x86 集群类型:CCE Standard、CCE Turbo 集群版本:v1.23(v1.23.5-r0及以上版本)|v1
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的微调方案,包括sft全参和lora 微调。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
A微调。 本文档主要介绍如何在ModelArts Standard上,利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL LoRA训练。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.9
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。