检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
册镜像。 验证SFS权限。 在左上角的服务列表中,选择SFS服务,进入SFS管理控制台。 在SFS管理控制台,在SFS Turbo中单击右上角的“创建文件系统”,如果能正常打开页面,表示当前用户具备SFS的操作权限。 验证ECS权限。 在左上角的服务列表中,选择ECS服务,进入ECS管理控制台。
e-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14 【llava1.5】
CPU环境,调用Model.configure_tf_infer_environ(device_type="CPU")完成配置,环境中只需配置运行一次。 GPU环境,调用Model.configure_tf_infer_environ(device_type="GPU")完成配置,环境中只需配置运行一次。
Bootstrap : no socket interface found”或“NCCL INFO Call to connect returned Connection refused, retrying”。 原因分析 NCCL是一个提供GPU间通信原语的库,实现集合通信和点对
x版本,推荐使用3.7.x版本。 如果本地安装SDK时,出现如下图中的报错,需要先安装3.1.1版本的futures依赖包,然后再重新安装SDK。 pip install futures==3.1.1 图1 安装ModelArts SDK报错信息 当pip版本>=24.1版本时,会对
command: ["/bin/sh", "-c"] args: - cd /mnt/sfs_turbo/llm_train/AscendSpeed; sh scripts/llama2/0_pl_pretrain_70b
command: ["/bin/sh", "-c"] args: - cd /mnt/sfs_turbo/llm_train/AscendSpeed; sh scripts/llama2/0_pl_pretrain_70b
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下: DEFAULT:CodeLab免费规格实例,每个用户最多只能创建一个。
project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下: DEFAULT:CodeLab免费规格实例,每个用户最多只能创建一个。
)) return '\n called default func !\n {} \n'.format(str(data)) @app.route('/health', methods=['GET']) def healthy(): return "{\"status\":
command: ["/bin/sh", "-c"] args: - cd /mnt/sfs_turbo/llm_train/AscendSpeed; sh scripts/llama2/0_pl_pretrain_70b