检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
导入模型后部署服务,提示磁盘不足 问题现象 用户在导入模型后,部署服务时,提示磁盘空间不足:“No space left on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker
给子账号配置查看所有Notebook实例的权限 管理员和开发者权限分离 不允许子账号使用公共资源池创建作业 委托授权ModelArts云服务使用SFS Turbo 给子账号配置文件夹级的SFS Turbo访问权限 父主题: Standard权限管理
Abnormal:网络连接不正常 表18 sfsTurboStatus 参数 参数类型 描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常
file or directory” 3.“Make sure the device specification refers to a valid device, The requested device appeares to be a GPU,but CUDA is not
日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal at xxx” 日志提示“RuntimeError:
选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OB
选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OB
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
|──Dockerfile 代码上传至SFS Turbo 将AscendFactory代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。
新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/data 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图3 选择SFS Turbo SFS Turbo不能直接挂载到容器的工作路径
如果需要设置SFS Turbo的文件夹权限,请参考权限管理文档配置。 “弹性文件服务”:选择已创建的SFS Turbo(在弹性文件服务控制台创建SFS Turbo)。 “云上挂载路径”:默认为/home/ma-user/work/。 “子目录挂载”:选择SFS Turbo的存储位置。
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch.randint()函数在device侧随机初始化(下图第214行),由于device侧随机性无法通过seed等自动化方式固定,先通过切换CPU侧计算初始化之后再切回device侧。在train.py中做如下图第215行代码修改。 重新训练D
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"